مقاومت نسبی برخی از ارقام و لاین‌های منتخب گندم نسبت به بیماری زنگ سیاه (Puccinia graminis f. sp. tritici)

نوع مقاله: علمی پژوهشی-فارسی

نویسندگان

1 بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آمورش کشاورزی و منابع طبیعی استان اردبیل

2 بخش تحقیقات غلات، موسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج

10.22055/ppr.2020.15644

چکیده

نبود مقاومت پایدار در ارقام گندم، دلیل اصلی همه گیری­ های زنگ ساقه (سیاه) است که می تواند تولید گندم در برخی از نقاط جهان را محدود کند. در این مطالعه به منظور تشخیص منابع احتمالی دارای مقاومت نسبی نسبت به زنگ سیاه، که نوعی مقاومت پایدار و غیر اختصاص- نژادی است، شاخص­ های مقاومت نسبی شامل ضریب آلودگی (CI)، شدت نهایی بیماری (FDS)، نرخ آلودگی ظاهری (r) و مقدار نسبی سطح زیر منحنی پیشرفت بیماری (rAUDPC) در 26 ژنوتیپ گندم همراه با شاهد حساس (مخلوط رقم­ McNair و لاین CD-90-12 ) طی سال زراعی 98-1397 در مزرعه آزمایشی ایستگاه تحقیقات کشاورزی آلاروق اردبیل ارزیابی شدند. ارزیابی ژنوتیپ­ ها در مزرعه تحت شرایط آلودگی طبیعی و در برابر جمعیت پاتوتیپ دارای پرآزاری برای ژن ­های مقاومت­Sr25 ،­Sr5 ،Sr6 ­،­Sr7a ،Sr9f ،­Sr9e ­،Sr13 ،Sr23 ،­Sr28 ،­Sr29 ،­Sr30 ،­Sr33 ،­Sr34 ،­Sr37 ،­SrDP2 ،­SrGT ،­SrPL، ­SrWLD، SrH و SrTmp انجام شد. واکنش گیاهچه ­ای نیز در شرایط گلخانه در برابر پاتوتیپ­ های­TKTTF (دو جدایه) و TTTTF انجام شد. بر اساس آن، ارقام گاسکوژن،MV17 و گنبد مقادیر پایینی از CI ،FRS ،و rAUDPC را نشان دادند و به عنوان گروه دارای سطح مطلوب مقاومت نسبی (تدریجی) در نظر گرفته شدند. نه رقم یا لاین مقادیر متوسطی از شاخص ­های مقاومت به زنگ ساقه را نشان دادند و به عنوان لاین­ های دارای سطح متوسط مقاومت نسبی برای زنگ ساقه در نظر گرفته شدند. شش رقم یا لاین نیز دارای سطح پایین مقاومت نسبی و بقیه ژنوتیپ­ ها در گروه لاین­ های حساس و بدون هیچ نوع مقاومت نسبی گروه ­بندی شدند. ژنوتیپ های زارع، گاسکوژن، گنبد، N-91-9 و N-93-15 با توجه به واکنش گیاهچه­ ای حساس (حداقل در برابر یک پاتوتیپ) و واکنش نیمه مقاوم (MR) تا نیمه حساس (MS) در مرحله گیاه بالغ به احتمال زیاد دارای تعداد ژن مقاومت نسبی بیشتری در برابر عامل بیماری هستند. ژنوتیپ­ های دارای سطح مطلوب و متوسط مقاومت نسبی که در این مطالعه تشخیص داده شدند می‌توانند برای معرفی رقم کاندید شده یا در برنامه­ های به ­نژادی گندم نسبت به زنگ ساقه استفاده شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Partial resistance of some wheat cultivars and candidate lines against stem rust (Puccinia graminis f. sp. tritici)

نویسندگان [English]

  • S. Safavi 1
  • A. Malihipour 2
1 Crop and Horticultural Science Research Department, Ardabil Agricultural and Natural Resources Research and Education Center
2 Department of Cereal Research, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj
چکیده [English]

Background and Objectives
Among biotic stresses, stem (black) rust, caused by Puccinia graminis f. sp. tritici is considered to be the most destructive disease of wheat in some countries and its damage reaches 100% in the years of epidemic on susceptible cultivars. Lack of durable resistance in wheat cultivars is the main reason for the black rust epidemics that can limit wheat production in some parts of the world. Today, it is possible to manage rusts with effective and new fungicides. However, growing resistant cultivars is the most effective, economical, and environmentally safe approach for disease management. Therefore, this study was performed in order to identify potential sources of partial resistance to black rust, which is a stable and non-race specific.
Materials and Methods
The partial resistance parameters including coefficient of infection (CI), final disease severity (FDS), apparent infection rate (r) and relative area under disease progression curve (rAUDPC) were assessed in a set of twenty six wheat genotypes along with susceptible control (Mixture of McNair and line; CD-90-12) during 2018-2019 cropping year. This study was conducted in field plots at Ardabil Agricultural Research Station (Iran). All genotypes were evaluated under natural infection conditions against race population having virulence to resistance genes; Sr25, Sr5, Sr6, Sr7a, Sr9e, Sr13, Sr23, Sr28, Sr29, Sr30, Sr33, Sr34, Sr37, SrDP2, SrGT, SrWLD, SrH and SrTmp. Seedling reaction was also appraised under greenhouse conditions against TKTTF (two isolates) and TTTTF pathotypes.
Results
The results showed that genotypes Gascogne, MV17 and Gonbad having low levels of CI, FRS, r and rAUDPC were considered as the group with desirable level of partial resistance. Nine cultivars/lines showed moderate values ​​of resistance parameters and were considered as genotypes with moderate level of partial resistance for stem rust. Six lines had low partial resistance and the rest of the lines were grouped in susceptible group without any partial resistance.
Discussion
Genotypes Zare, Gascogne, Gonbad, N-91-9, and N-91-15 due to susceptible reaction (at least against to one pathotype) at seedling and moderately resistant to moderately susceptible response at the adult plant stage are likely to have the more number of partial resistance genes. Genotypes with desirable and moderate levels of partial resistance identified from this study can be used to introduce candidate varieties or in wheat breeding programs to stem rust.

کلیدواژه‌ها [English]

  • wheat
  • stem rust
  • pathotype
  • partial resistance
  • Area under disease progress curve
Admassu, B., Friedt, W., and Ordon, F. 2012. Stem rust seedling resistance genes in Ethiopian wheat cultivars and breeding lines. African Crop Science Journal, 20: 149–161.
Afshari, F. 2012. Genetics of pathogenicity of wheat stem rust pathogen (Puccinia graminis f. sp. tritici) and reaction of wheat genotypes to the disease. Iranian Journal of Plant Protection Science, 43: 357–365.
Ali, S., Shah, S.J.A., and Maqbool, K. 2008. Field-based assessment of partial resistance to yellow rust in wheat germplasm. Journal of Agriculture and Rural Development, 6: 99–106.
Alo, F., Al-Saaid, W., Baum, M., Alatwani H., and Amri, A. 2018. Slow rusting of bread wheat landraces to Puccinia striiformis f. sp. tritici under artificial field inoculation. Arab Journal of Plant Protection, 36 (2): 164 –175.
Anonymous. 2016. Agriculture production. FAOSTAT Agriculture Data. Available at http://www.fao.org.
Anonymous. 2017. Spread of damaging wheat rust continues: new races found in Europe, Africa, Central Asia. Food and Agricultural Organization of the United Nations (FAO), Available at http://www.fao.org/news/story/en/item/469467/icode/.
Bhattacharya, S. 2017. Deadly new wheat disease threatens Europe’s crops. Nature, 542: 145–146.
Boyd, L. A. 2005. Centenary review: can Robigus defeat an old enemy? -Yellow rust of wheat.  The Journal of Agricultural sciences, 143: 233-243.
Bux, H., Ashraf, M., Hussain, F., Rattu, A.U.R., and Fayyaz, M. 2012. Characterization of wheat germplasm for stripe rust (Puccini striiformis f. sp. tritici) resistance. Australian Journal of Crop Science, 6: 116–120.
Chen, X. M. 2005. Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Canadian Journal of Plant Pathology, 27: 314–337.
Chen, X. M. 2013. Review article: high-temperature adult-plant resistance, key for sustainable control of stripe rust. American Journal of Plant Sciences, 4: 608–627.
Chen, X., Coram, T., Huang, X., Wang M., and Dolezal, A., 2013. Understanding molecular mechanisms of durable and non-durable resistance to stripe rust in wheat using a transcriptomics approach. Current Genomics, 14: 111–126.
Denbel, W., Badebo, A., and Alemu, T. 2013. Evaluation of Ethiopian commercial wheat cultivars for resistance to stem rust of wheat race ‘UG99’. International Journal of Agronomy and Plant Production, 4: 15 –24.
Flor, H. H. 1956. The complementary genetic systems in flax and flax rust. Advanced Genetics, 8: 29-54.
Goutam, U., Kukreja, S., Yadav, R., Salaria, N., Thakur, K., and Goya, A. K. 2015. Recent trends and perspectives of molecular markers against fungal diseases in wheat. Frontiers in Microbiology, 6: 861.
Hei, N., Shimelis, H. A., Laing, M., and Admassu, B. 2015. Assessment of Ethiopian wheat lines for slow rusting resistance to stem rust of wheat caused by Puccinia graminis f. sp. tritici. Journal of Phytopathology, 163: 353–363.
Herrera-Foessel, S. A., Lagudah, E. S., Huerta-Espino, J., Hayden, M. J., Bariana, H. S., Singh, D., and Singh, R. P. 2011. New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theoretical and Applied Genetics, 122: 239–49.
Hodson, D. 2013. Localized stem rust epidemic in southern Ethiopia extreme caution and vigilance needed in East Africa and Middle East region. A global wheat rust monitoring system. Available at http://rusttracker.cimmyt.org/?p=5473 (verified Feb 12, 2014).
Jin, Y., and Singh, R. P. 2006. Resistance in US wheat to recent eastern Africa isolates of Puccinia graminis f. sp. tritici with virulence to resistance gene Sr31. Plant Disease, 90: 476–480
Jin, Y., Pretorius, R. A., Singh, R. P., and Fetch, T. J. 2008. Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Disease, 92: 923–926.
Jin, Y., Szabo, L. J., Rouse, M. N., Fetch, T. J., Pretorius, Z. A., Wanyera, R. and Njau, P. 2009. Detection of virulence to resistance gene Sr36 within the TTKS race lineage of Puccinia graminis f. sp. tritici. Plant Disease, 93: 367–370.
Kumar, S., Phogat, B. S., Vikas, V.K., Sharma, A.K., Saharan, M.S., Singh, A.K., et al. 2019. Mining of Indian wheat germplasm collection for adult plant resistance to leaf rust. PLoS One, 14(3): e0213468. https://doi.org/10.1371/journal.pone.0213468.
McIntosh, R. A., Wellings, C. R., and Park, R. F. 1995. Wheat rusts, an atlas of resistance genes. CSIRO, Melbourne. 200 pp.
Mitiku, M., Hei, N. B., and Abera, M. 2018. Characterization of slow rusting resistance against stem rust (Puccinia graminis f. sp. tritici) in selected bread wheat cultivars of Ethiopia. Advances in Crop Science and Technology, 6: 389. doi:10.4172/2329-8863.1000389.
Malihipour, A., Safavi, S. A., Nasrollahi, M., Ahmadi, G. H., Tabatabei, S. N., and Houshyar, R. 2019. Investigation of efficiency of stem rust resistance genes in Iran during 2018 and 2019 through the implementation of stem rust trap nurseries. In: Proceeding of The First Iranian Plant Pathology Congress, 13 August-01 September, Karaj, Iran. Aavailable at https://fippc.ut.ac.ir/paper?manu=37834.
Navabi, A., Singh, R. P., Tewari, J. P., and Briggs, K. G. 2004. Inheritance of high levels of adult-plant resistance to stripe rust in five spring wheat genotypes. Crop Science, 44: 1156 –1162.
Nzuve, F. M., Bhavani, S., Tusiime G., Njau, P., and Wanyera, R. 2012. Evaluation of bread wheat for both seedling and adult plant resistance to stem rust. African Journal of Plant Science, 6: 426– 432.
Olivera, P., Newcomb, M., Szabo, L. J, Rouse, M., Johnson, J., Gale, S., Luster, D. G., Hodson, D., Cox, J. A., Burgin, L., Hort, M., Gilligan, C. A., Patpour, M., Justesen, A. F., Hovmøller, M. S.,Woldeab, G., Hailu, E., Hundie, B., Tadesse, K., Pumphrey, M., Singh, R. P., and Jin, Y. 2015. Phenotypic and genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust epidemic in southern Ethiopia in 2013-14. Phytopathology 105: 917–928.
Ochoa, J., and Parlevliet, J. E. 2007. Effect of partial resistance to barley leaf rust, Puccinia hordei, on the yield of three barley cultivars. Euphytica, 153: 309-312.
Pandey, H. N., Menon, T. C. M., and Rao, M. V. 1989. A single formula for calculating area under disease progress curve. Rachis, 2: 38–39.
Pathan, A. K., and Park, R. F. 2006. Evaluation of seedling and adult plant resistance to leaf rust in European wheat cultivars. Euphytica, 149: 327–342.
Patpour, M., Hovmoller, M. S., Shahin, A. A., Newcomb, M., Olivera, P., Jin, Y., Luster, D., Hodson, D., Nazari, K., and Azab, M. 2016. Emergence of virulence to SrTmp in the Ug99 race group of wheat stem rust, Puccinia graminis f. sp. tritici, in Africa. Plant Disease, 100(2): 522.
Patpour, M., Nazari, K., Ogbonnaya, F., Alavi, S. M., and Mousavi, A. 2014. Phenotypic and molecular characterization of resistance to stem rust in wheat cultivars and advanced breeding lines from Iran and Syria. Crop Breeding Journal 4, (1): 1–14.
Peterson, R. F., Campbell, A. B., and Hannah, A. E. 1948. A diagrammatic scale for estimating rust intensity of leaves and stems of cereals. Canadian Journal of Research, 26: 496–500.
Pretorius, Z. A., Singh, R. P., Wagoire, W. W., and Payne T. S. 2000. Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Disease, 84: 203.
Roelfs, A. P., Singh, R. P., and Saari, E. E. 1992. Rust diseases of wheat: Concepts and Methods of Diseases Management.  Mexico, D.F.CIMMYT. 81 pp.
Roohparvar, R., and Omrani, A. 2018. Race analysis of Puccinia graminis f. sp. tritici led to identification of the new race TTKTK, affecting Sr31 and SrTmp, in Iran. In: Proceeding of 2018 BGRI Technical Workshop, 14–17 April, Marrakech, Morocco. Avaiable at https://globalrust.org/rgenes/srtmp.
Rouse, M. N., Nava, I. C., Chao, S., Anderson, J. A., and Jin, Y. 2012. Identification of markers linked to the race Ug99 effective stem rust resistance gene Sr28 in wheat (Triticum aestivum L.) Theoretical and Applied Genetics, 125: 877–885.
 
Safavi, S. A. and Afshari, F. 2012. Quantitative resistance of some Elite wheat lines to Puccinia striiformis f. sp. tritici. Archives of Phytopathology and Plant Protection, 45:740–749.
Safavi, S.A. 2015. Effects of yellow rust on yield of race-specific and slow rusting resistant wheat genotypes. Journal of Crop Protection, 4: 395–408.
Safavi, S. A., and Afshari, F. 2017a. First report of virulence to resistance gene Sr25 by the stem rust pathogen (Puccinia graminis f. sp. tritici) in Ardabil, North West of Iran. Iranian Journal of Plant Pathology, 53: 119–122.
Safavi, S. A., and Afshari, F. 2017b. A seven-year assessment of resistance durability to yellow rust in some wheat cultivars in Ardabil province, Iran. Journal of Crop Protection, 6: 409–421.
Safavi, S. A., and Malihipour, A. 2018. Effective and ineffective resistance genes and reaction of promising wheat lines to stem rust in Ardabil. Journal of Crop Protection, 7: 4015-427.
Saleem, K., Imran Arshad, H. M., Shokat, S., and Manzoor, Atta, B. 2015. Appraisal of wheat germplasm for adult plant resistance against stripe rust. Journal of Plant Protection Research, 55: 405–414.
Sandoval-Islas, J. S., Broers, L. H. M., Mora-Aguilera, G., Parlevliet, J. E., Osada, K. S. and Vivar, H. E. 2007. Quatitative resistance and its components in 16 barley cultivars to yellow rust, Puccinia striiformis f. sp. hordei. Euphytica, 153: 295–308.
Sawhney, R. N. 1995. Genetics of Wheat-Rust Interaction. Plant Breeding Review, 13: 293–343.
Shah, S. J. A., Hussain, S., Ahmad, M., Farhatullah, M. and Ibrahim, M. 2014. Characterization of slow rusting resistance against Puccinia striiformis f. sp. tritici in candidate and released bread wheat cultivars of Pakistan. Journal of Plant Pathology and Microbiology, 5: 223. doi:10.4172/2157-7471.100022.
Singh, D., Simmonds, J., Park, R. F., Bariana, H. S., and Snape, J. W. 2009. Inheritance and QTL mapping of leaf rust resistance in the European winter wheat cultivar “Weaver”. Euphytica, 169:253–261.
Singh, K. V., Singh, G. P., Singh, P. K., and Aggarwal, H. R. 2017. Assessment of slow rusting resistance components to stripe rust pathogen in some exotic wheat germplasm. Indian Phytopathology, 70: 52–57.
Singh, R. P. 1992. Association between gene Lr34 for leaf rust resistance and leaf tip necrosis in wheat. Crop Science, 32: 874-878.
Singh, R. P. Nelson, J. C., and Sorrells, M. E. 2000. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Science, 40: 1148–1155.
Singh, R. P., Huerta-Espino, J., and William, H. M. 2005. Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turkish Journal of Agriculture and Forestry, 29, 121–127.
Singh, R. P., Hodson, D.P., Jin, Y., and Huerta-Espino, J. 2006. Current status, likely migration and strategies to mitigate the threat to wheat production from race UG99 (TTKS) of stem rust pathogen. CAP review: Perspective in Agriculture, Veterinary Science, Nutrition and Natural Resources, 1:1–13.
Singh, R. P.,  Huerta-Espino, J.,  Bhavani, S., Herrera-Foessel, S. A.,  Singh, D., Singh, P. K., Velu, G.,  Mason, R. E., Jin,  Y.,  Njau, P., and Crossa, J. 2011. Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica, 179:175–186.
Singh, R. P., Hodson, D. P., Jin, Y., Lagudah, E. S., Ayliffe, M. A., Bhavani, S., Rouse, M. N., Pretorius, Z. A., Szabo, L. J., Huerta-Espino, J., Basnet, B. R., Lan, C., and Hovmøller, M. S. 2015. Emergence and spread of new races of wheat stem rust fungus: Continued threat to food security and prospects of genetic control. Phytopathology, 105: 872–84.
Stakman, E. C., Stewart, D.M., and Loegering, W.Q. 1962. Identification of physiologic races of Puccinia graminis var. tritici. Washington, D. C., United States Department of Agriculture, Agricultural Research Service, 1–53.
Stubbs, R.W., Prescott, J. M., Saari, E. E., and Dubin, H. J. 1986. Cereal disease methodology manual.  CIMMYT: Mexico, D. F. P. 46.
Tabassum, S. 2011. Evaluation of advance wheat lines for slow yellow rusting (Puccinia striiformis f. sp. tritici). Journal of Agricultural Science, 3: 239–249.
Van der Plank, J. E. 1968. Disease Resistance in Plants. New York, Academic Press. 206 pp.
Xu, X. F., Li, D. D., Liu, Y., Gao, Y., Wang, Z. Y., Ma, Y. C., Yang, S., Cao, Y. Y., Xuan, Y. H., and Li, T. Y. 2017. Evaluation and identification of stem rust resistance genes Sr2, Sr24, Sr25, Sr26, Sr31 and Sr38 in wheat lines from Gansu province in China. PeerJ, 5: e4146.
Yu, L., Barbier, H., Matthew, N. R., Singh, S., Singh, R. P., Bhavani, S., Huerta-Espino, J., and Sorrells, M. E. 2014. A consensus map for Ug99 stem rust resistance loci in wheat. Theoretical of Applied Genetics, 127: 1561–1581.