اثر حشره‌‌کشی نانو سیلیکای بارگذاری ‌شده با چند حشره‌‌کش برای کنترل لارو لمبه‌گندم، Trogoderma granarium روی سطح‌های موزائیک و استیل‌ گالوانیزه

نوع مقاله: علمی پژوهشی-فارسی

نویسندگان

1 دانشیار دانشگاه شهید چمران اهواز

2 دانشجوی دکترای حشره‌شناسی کشاورزی، دانشگاه شهید چمران اهواز

10.22055/ppr.2020.15975

چکیده

بروز مقاومت آفات به آفت‌کش ­ها، اثرات سوء روی گونه ­های غیر هدف و خطرات زیست محیطی آن­ها، تمایل به استفاده از روش‌های جایگزین را افزایش داده است. یکی از روش­ های نوین کنترل آفات کاربرد فرمولاسیون‌های نانو آفت ­کش ­ها می­ باشد. کاربرد نانو آفت ­کش ­ها باعث کنترل رهایش آفت‌کش ­ها از نانو ذرات، حفاظت آفت‌کش ­ها در برابر عوامل محیطی مانند نور و گرما، کاهش غلظت مصرفی و امکان بروز مقاومت آفات به آفت‌کش ­ها می ­شود. بنابراین، در این مطالعه نانو ذرات سیلیکا با روش سل- ژل تهیه و به طور جداگانه با حشره‌کش‌های دلتامترین، پایری‌پروکسی‌فن و کلروپایریفوس بارگذاری شد. سطح­ های موزاییک و استیل‌­گالوانیزه با حشره‌­کش ­های دلتامترین (غلظت­ های 0025/0 و 005/0 گرم ماده موثر بر متر مربع)، پایری­‌پروکسی­‌فن (غلظت ­های 001/0، 01/0 و 1/0 گرم ماده موثر بر متر مربع) و کلرو­پایریفوس (غلظت­ های 01/0 و 2/0 گرم ماده موثر بر متر مربع) به تنهایی و یا با نانو سیلیکای بارگذاری‌شده با حشره­ کش‌­ها تیمار شدند. تلفات اولیه لاروهای کوچک و بزرگ لمبه گندم، Trogoderma granarium Everts (Coleoptera: Dermestidae)، 1، 3 و 7 روز پس از تیمار شمارش شد و تلفات تأخیری 7 روز پس از آن بررسی گردید. طبق نتایج، در همه آزمایش­ ها لاروهای کوچک لمبه گندم حساسیت بیشتری نسبت به لاروهای بزرگ داشتند. همچنین، اثر حشره‌­کشی نانو سیلیکای بارگذاری شده با حشره‌کش ­ها نسبت به کاربرد حشره‌کش ­ها به تنهایی به طور معنی‌داری بیشتر بود. بنابراین، می ­توان کاربرد نانو ذرات سیلیکا را به‌عنوان حامل حشره­کش­ ها برای کنترل لمبه گندم توصیه کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Insecticidal Efficacy of Silica Nanoparticles Loaded with Several Insecticides in Controlling Khapra Beetle Larvae, Trogoderma granarium on Mosaic and Galvanized Steel Surfaces

نویسندگان [English]

  • M. Ziaee 1
  • A. Babamir-Satehi 2
1 Associate Professor, Shahid Chamran University of Ahvaz
2 Ph.D. candidate of Agricultural Entomology,,Shahid Chamran University of Ahvaz
چکیده [English]

Introduction
The incidence of pests’ resistance to pesticides, adverse effects of pesticides on non-target species, and environmental hazards have increased the tendency of applying various pests control techniques. Nanopesticide formulations are thus considered as one of the recent techniques in controlling pests. Using this technology increases the effectiveness of pesticides under various environmental conditions, including light and hot situations. Indeed, it decreases the amount of pesticide use and ultimately decreases the chance of pests’ resistance to insecticides.
Materials and Methods
In the current study, the silica nanoparticles were prepared using the sol-gel method and loaded with deltamethrin, pyriproxyfen, and chlorpyrifos. The mosaic and galvanized steel surfaces were treated with either deltamethrin (0.0025 and 0.005 g(a.i.)/m2), pyriproxyfen (0.001, 0.01 and 0.1 g(a.i.)/m2) and chlorpyrifos (0.01 and 0.2 g(a.i.)/m2) alone or loaded in nanosilica. The experiments were carried out at 3 replicates, and 3 sub replicates. In each replicate, 10 small or large larvae of Trogoderma granarium Everts (Coleoptera: Dermestidae) were introduced, and 2 g wheat Chamran variety was utilized as food source. All experiments were conducted at 30±1 °C, 65±5 % RH, and darkness. The initial mortality of small and large larvae of T. granarium was counted 1, 3, and 7 days after exposure, and delayed mortality was assessed 7 days thereafter. For each larval group, the variance analysis of initial and delayed mortality was subjected to the factorial test (concentration and time as main effects). Means were separated by Tukey Kramer HSD test at p < /em> =0.05 using SPSS software version 16.
 
 
Results and Discussion
Results indicated that initial and delayed mortality increased by raising concentration levels and exposing time to each concentration in all experiments. In all cases, the small larvae of T. granarium were more sensitive than large larvae.  Deltamethrin, followed by chlorpyrifos, was the most toxic to the larvae of T. granarium. Due to our findings, the mortality was dramatically higher in galvanized steel than the mosaic one. It could be attributed to the steel's flat surface, reducing insecticide residues' absorbance within the surface. Moreover, the insecticidal efficacy of nanosilica loaded with insecticides was significantly greater than the application of insecticides without nanosilica. Utilizing nanoparticles, we found an increase in the ratio of surface area to volume of insecticides, resulting in more insect contact to insecticide particles and eventually improved the mortality rate of insecticide.
Conclusion
It is therefore concluded that the application of loaded insecticides in silica nanoparticles significantly increased T. granarium larvae's mortality rate. Furthermore, silica nanoparticles can be introduced as the carrier of insecticides to control T. granarium in the stored wheat efficiently. Besides, deltamethrin loaded SNPs is potentially recommended as one capable component that can be effectively conducted during pest management programs in terms of stored products pest control. 

کلیدواژه‌ها [English]

  • Carrier
  • Stored products
  • Nanoparticles
  • Trogoderma granarium
Abbott, W.S. 1925. A method for computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265-267.
Andric, G., Kljajic, P., and Prazic-Golic, M. 2014. Residual efficacy of cypermethrin and pirimiphos-methyl against Sitophilus granarius (L.) and Plodia interpunctella (Hübner) on concrete surface. Pesticidi i Fitomedicina, 29 (4): 275-281.
Arthur, F.H. 2008. Efficacy of chlorfenapyr against Tribolium castaneum and Tribolium confusum (Coleoptera: Tenebrionidae) adults exposed on concrete, vinyl tile, and plywood surfaces. Journal of Stored Products Research, 44(2): 145-151.
Athanassiou, C.G., Arthur, F.H., Kavallieratos, N.G., and Throne, J.E. 2011. Efficacy of pyriproxyfen for control of stored-product psocids (Psocoptera) on concrete surfaces. Journal of Economic Entomology, 104(5): 1765-1769.‏
Athanassiou, C.G., Kavallieratos, N.G., Boukouvala, M.C., Mavroforos, M.E. and Kontodimas, D.C. 2015. Efficacy of alpha-cypermethrin and thiamethoxam against Trogoderma granarium Everts (Coleoptera: Dermestidae) and Tenebrio molitor L. (Coleoptera: Tenebrionidae) on concrete. Journal of Stored Products Research, 62: 101-107.
Babamir-Satehi, A., Ziaee, M., and Ashrafi, A. 2018. Silica nanoparticles: a potential carrier of chlorpyrifos to control two stored-product insect pests as slurries. Entomologia Generalis, 37: 77-91.
Bagheri Zenoze, A. 2013. Pests and Harmful Storage Factors and their Management, Fourth Edition, University of Tehran Publications, Tehran, 352 p.
Barik, T., Kamaraju, R., and Gowswami, A. 2012. Silica nanoparticle: a potential new insecticide for mosquito vector control. Parasitology Research, 111: 1075-1083.
Chakravarthy, A., Kandakoor, S., Bhattacharya, A., Dhanabala, K., Gurunatha, K., and Ramesh, P. 2012. Bioefficacy of inorganic nanoparticles CdS, Nano-Ag and Nano-TiO2 against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Current Biotica, 6: 271-281.
Debnath, N., Das, S., Patra, P., Mitra, S., and Goswami, A. 2012. Toxicological evaluation of entomotoxic silica nanoparticle. Toxicological & Environmental Chemistry, 94: 944-951.
Debnath, N., Das, S., Seth, D., Chandra, R., Bhattacharya, S.C., and Goswami, A. 2011. Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). Journal of Pest Science, 84(1): 99-105.
Guedes, R.N.C., Campbell, J.F., Arthur, F.H., Opit, G.P., Zhu, K.Y., and Throne, J.E. 2008. Acute lethal and behavioral sublethal responses of two stored‐product psocids to surface insecticides. Pest Management Science, 64(12): 1314-1322.
Hill, D.S. 2002. Types of pests. In Pests of stored foodstuffs and their control. Malaysia: Kluwer Academic Publishers, Springer. pp.: 55-63.
Kavallieratos, N.G., Athanassiou, C.G., Barda, M.S., and Boukouvala, M.C. 2016. Efficacy of five insecticides for the control of Trogoderma granarium Everts (Coleoptera: Dermestidae) larvae on concrete. Journal of Stored Products Research, 66: 18-24.
Kljajic, P., and Peric, I. 2007. Effectiveness of wheat-applied contact insecticides against Sitophilus granarius (L.) originating from different populations. Journal of Stored Products Research, 43(4): 523-529.
Misumi, T., Kitamura, H., and Oogita, T. 2008. Simple analysis method to measure phosphine residue in grains, herbs, and spices using headspace gas chromatography. Research Bulletin of the Plant Protection Service, Yokohama Plant Protection Station, Ministry of Agriculture, Forestry and Fisheries, Yokohama, Japan. pp. 13-20.
Nayak, M.K., Collins, P.J., and Kopittke, R.A. 2003. Residual toxicities and persistence of organophosphorus insecticides mixed with carbaryl as structural treatments against three liposcelid psocid species (Psocoptera: Liposcelididae) infesting stored grain. Journal of Stored Products Research, 39 (4): 343-353.
Rajendran, S. 2001. Alternatives to methyl bromide as fumigants for stored food commodities. Pesticide Outlook, 12(6): 249-253.
SPSS. 2007. Spss 16 for windows  user’s guide release, SPSS Inc, Chicago.
Stadler, T., Buteler, M., and Weaver, D.K. 2010. Novel use of nanostructured alumina as an insecticide. Pest Management Science, 66: 577-579.
Wallbank, B.E. 1994. Effectiveness of residual insecticides against warehouse beetle, Trogoderma variabile Ballion. p. 853-856. In Highley, E., Wright, E.J., Banks, H., and Champ, B.R. (eds.) Proceedings of the 6th International Working Conference on Stored-product Protection. CAB International, Canberra, Australia.
Wen, L.X., Li, Z.Z., Zou, H.K., Liu, A.Q., and Chen, J.F. 2005. Controlled release of avermectin from porous hollow silica nanoparticles. Pest Management Science, 61: 583-590.
Yuya, A.I., Tadesse, A., Azerefegne, F., and Tefera, T. 2009. Efficacy of combining Niger seed oil with malathion 5% dust formulation on maize against the maize weevil, Sitophilus zeamais (Coleoptera: Curculionidae). Journal of Stored Products Research, 45: 67-70.