بررسی تأثیر نانو‌ذرات اکسید روی، پودر کائولین و قارچ Beauveria bassiana (Balsamo) Vuillemin در اختلاط با آزادیراختین علیه سفید‌بالک پنبه Bemisia tabaci و شفیره پارازیتوئید آن، Eretmocerus mundus در شرایط مزرعه

نوع مقاله : علمی پژوهشی-فارسی

نویسندگان

1 دانشجوی دکتری حشره شناسی‌ کشاورزی،‌ گروه‌گیاه‌پزشکی،‌ دانشکده‌کشاورزی،‌ دانشگاه ارومیه، ارومیه، ایران

2 استادیار،‌ گروه‌گیاه‌پزشکی،‌ دانشکده‌ کشاورزی،‌ دانشگاه‌ ارومیه،‌ ارومیه، ایران

3 دانشیار،‌ دانشکده‌ کشاورزی،‌ دانشگاه‌ ارومیه،‌ ارومیه، ایران

چکیده

سفید‌بالک پنبه Bemisia tabaci (Gennadius) (Hem.: Aleyrodidae) از آفات مهم محصولات کشاورزی در ایران است. در تحقیق حاضر تأثیر نانو­ذرات اکسید­روی (ZnO NPs)، کائولین، قارچ Beauveria bassiana (Bals.)  (جدایه EUTP105) جداگانه و در اختلاط با آزادیراختین، در مقایسه با حشره­ کش تیاکلوپراید روی تخم و پوره سفید­بالک و شفیره پارازیتوئید آن Eretmocerus mundus Mercet (Hymenoptera: Aphelinidae) در شرایط مزرعه مورد بررسی قرار گرفت. بیشترین کارایی روی تخم و پوره‌های آفت، سه روز پس از تیمار به­ ترتیب در تیمار کائولین+آزادیراختین و تیاکلوپراید، و کمترین کارایی در تیمار قارچ B. bassiana مشاهده شد. در روز هفتم، کائولین+آزادیراختین و نانو­ذرات اکسید روی بیشترین و کمترین تلفات را روی تخم ­های آفت نشان دادند، در حالی ­که آزادیراختین و B. bassiana به ترتیب بیشترین و کمترین کارایی را روی پوره داشتند. در روز 14، بیشترین کارایی روی تخم و پوره­ های آفت به ­ترتیب در تیمارهای کائولین+آزادیراختین و آزادیراختین مشاهده شد و کمترین کارایی روی تخم و پوره­ ها مربوط به B. bassiana بود. در روز سوم، شفیره پارازیتوئید در تیمار­های تیاکلوپراید و B. bassiana به ­ترتیب بیشترین و کمترین درصد تلفات را داشت و در روز هفتم، آزادیراختین و نانو­ذرات به­ ترتیب بیشترین و کمترین تلفات را ایجاد کرد. در روز چهاردهم، کائولین بیشترین تلفات را روی شفیره پارازیتوئید نشان داد که پس از آن کائولین+آزادیراختین، آزادیراختین و تیاکلوپراید قرار داشت. بالاترین عملکرد محصول و نسبت سود به هزینه به‌ترتیب در تیمار­های کائولین+آزادیراختین و کائولین مشاهده شد. بر اساس نتایج، نانو­ذرات و کائولین جداگانه و در اختلاط با آزادیراختین می­ تواند در برنامه­ مدیریت تلفیقی سفید­بالک پنبه مورد استفاده قرار گیرند.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of zinc oxide nanoparticles, kaolin powder and Beauveria bassiana (Balsamo) Vuillemin in combination with Neemarin® against Bemisia tabaci and pupae of Eretmocerus mundus under field conditions

نویسندگان [English]

  • M. Taheri Sarhozaki 1
  • S. Aramideh 2
  • J. Akbarian 2
  • S. Pirsa 3
1 Ph.D. Student, Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Assistant Professor, Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran
3 Associate Professor,, Faculty of Agriculture, Urmia University, Urmia, Iran
چکیده [English]

Background and Objectives
 Bemisia tabaci (Genn.)(Hem: Aleyrodidae)is considered as one significant pest in the agricultural products in Iran. In this research, the effects of ZnO NPs, kaolin, B. bassiana (EUTP105 Isolate) were assessed alone or in combination to Neemarin® compared to thiacloprid insecticide under field conditions on eggs and nymphs of B. tabaci and pupae of its parasitoid Eretmocerus mundus.
Materials and Methods
This research was handled in the research field of the scientific staff of the Cotton Research Center of East Iran, Kashmar, in a randomized complete block design with three replications in August 2019. The experimental plots were separately 6 m2 and 1.5 m. The recommended concentration of Neemarin® (15 mg L-1 AZA), thiacloprid (0.3 mL L-1), Kaolin (30 g L-1), a concentration of 20 mg L-1 of ZnO NPs, a concentration of 1×1010 conidia mL-1 of B. bassiana, half- concentration of Neemarin® (7.5 mg L-1 AZA) + 10 mg L-1 of ZnO NPs, half- concentration of Neemarin® (7.5 mg L-1 AZA) + 15 g L-1 of Kaolin and half- concentration of Neemarin® (7.5 mg L-1 AZA) + a concentration of 1×105 conidia mL-1 of B. bassiana were prepared which sprayed on upper and lower surfaces of cotton plants using a knapsack sprayer, equivalent to an application volume of 500 l ha-1. The control treatment was sprayed by water. The mortality of B. tabaci eggs and nymphs and pupal stage of E. mundus were calculated using Henderson and Tilton equation . To this purpose, five plants were randomly selected in each plot and three leaves from each one (top, middle, and bottom section of plant canopy) were excised and transferred to a laboratory. Two pieces of 1 cm2 from each leaf were chosen so that the units included into main vein. Total live eggs and nymphs of pest as well pupae of parasitoid in each sample unit were counted using a binocular. Samplings were handled one day before and 3, 7 and 14 days after spraying.
 Results
In 3 DAT (days after treatment), the most effective treatments on eggs and nymphs of pest were Kaolin + Neemarin® and thiacloprid, respectively. While, the least effective treatments were B. bassiana. In 7 DAT, Kaolin + Neemarin® and ZnO NPs exerted the highest and lowest mortality, respectively, on the eggs of pest, Neemarin® and B. bassiana exerted the highest and lowest mortality, respectively to the nymph. In 14 DAT, the highest efficacy on eggs and nymphs was observed in Kaolin + Neemarin® and Neemarin®, respectively, while the lowest efficacy both on eggs and nymphs belonged to B. bassiana. The highest and lowest mortality of the pupae of parasitoid in 3 DAT belonged to thiacloprid and B. bassiana, respectively. In 7 DAT, Neemarin® and ZnO exerted the highest and lowest mortality on the parasitoid pupae, respectively.  In 14 DAT, Kaolin exerted the highest mortality on the pupae of parasitoid that was followed by Kaolin + Neemarin®, Neemarin®, and thiacloprid. The maximum yield and benefit/cost ratio were observed in Kaolin + Neemarin®, followed by Kaolin treatments. 
Discussion
Considering the results, ZnO NPs and Kaolin alone, or in combination to Neemarin® can be the suitable candidates as an alternative in the IPM programs of B. tabaci on the cotton field.

کلیدواژه‌ها [English]

  • Cotton
  • Non-chemical control
  • Whitefly
  • Parasitoid
Ahmad, M., Arif, M.I., Ahmad, Z., and Denholm, I. 2002. Cotton whitefly (Bemisia tabaci) resistance to organophosphate and pyrethroid insecticides in Pakistan. Pest Management Science, 58: 203-208.
Al-Deghairi, M.A. 2009. Combining effect of Beauveria bassiana (Bals.) and Eretmocerus mundus Mercet (Hymenoptera: Aphelinidae) on sweetpotato whitefly, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). Journal of Entomology, 6(2): 72-81.
Allahyari, R., Aramideh, S., Safaralizadeh, M.H., Rezapanah, M.R., and Michaud, J.P. 2019. Synergy between parasitoids and pathogens for biological control of Helicoverpa armigera in chickpea. Entomologia Experimentalis et Applicata, 168: 70-75.
Athanassiou, C.G., Kavallieratos, N.G., Benelli, G., Losic, D., Usha Rani, P., and Desneux, N. 2018. Nanoparticles for pest control: current status and future perspectives. Journal of Pest Science, 91: 1-15.
Auffan, M., Rose, J., Bottero, J.Y., Lowry, G.V., Jolivet, J.P., and Wiesner, M.R. 2009. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4: 634-641.
Benelli, G. 2016. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitology Research, 115: 23-34.
Bestete, L.R., Torres, J.B., Silva, R.B.B., and Silva-Torres, C.S.A. 2016. Water stress and kaolin spray affect herbivorous insects’ success on cotton.Arthropod-Plant Interactions, 10: 445-453.
Byrne, D.N., and Bellows, J.T.S. 1991. Whitefly biology. Annual Review of Entomology, 36: 431-457.
Caboni, P., Cabras, M., Angioni, A., Russo, M., and Cabras, P. 2002. Persistence of azadirachtin residues on olives after field treatment. Journal of Agricultural and Food Chemistry, 50: 3491-3494.
Clausen, C.A., Kartal, S.N., Arango, R.A., and Green, F. 2011. The role of particle size of particulate nano-zinc oxide wood preservatives on termite mortality and leach resistance. Nanoscale Research Letters, 6: (1) 427 -433.
Coudriet, D.L., Prabhaker, N., and Meyerdirk, D.E. 1985. Sweetpotato whitefly (Homoptera: Aleyrodidae): Effects of neem-seed extract on oviposition and immature stages. Journal of Environmental Entomology, 14: 776-779.
Cuthbertson, A.G.S., Walters, K.F.A., and Northing, P. 2005. Susceptibility of Bemisia tabaci immature stages to the entomopathogenic fungus Lecanicillium muscarium on tomato and verbena foliage. Mycopathologia, 159: 23-29.
Deacon, J.W. 1983. Microbial Control of Plant Pests and Diseases. (Washington, DC: American Society for Microbiology). 88 pp.
Depieri, R.A., Martinez, S.S., and Menezes, Jr.A.O. 2005. Compatibility of the fungus, Beauveria bassiana (Bals.) Vuill. (Deuteromycetes) with extracts of neem seeds and leaves and the emulsible oil. Neotropical Entomology, 34: 601-606.
Faria, M., and Wraight, S.P. 2001. Biological Control of Bemisia tabaci with fungi. Crop Protection, 20: 767-778.
Ghazawy, N.A., Awad, H.H., and Rahman, K.M.A. 2010. Effects of azadirachtin on embryological development of the desert locust Schistocerca gregaria Forskål (Orthoptera: Acrididae). Journal of Orthoptera Research, 19: 327-332.
Glenn, D.M. 2016. Effect of highly processed calcined kaolin residues on apple productivity and quality. Scientia Horticulturae, 201: 101-108.
Glenn, D.M., and Puterka, G.J. 2005. Particle films: A new technology for agriculture. Horticultural Reviews, 31: 1-44.
Gokce, A., and Kubilay, M. 2005. Pathogenicity of Paecilomyces spp. to the Glasshouse Whitefly, Trialeurodes vaporariorum, with Some Observations on the Fungal Infection Process. Turkish Journal of Agriculture and Forestry, 29(5): 331-339.
Hassan Abadi, Z., Askarianzadeh, A., and Naderi Arefei, A. 2019. Evaluation of defferent cotton genotypes resistance to Bemisia tabaci (Hemiptera: Aleyrodidae) in Garmsar region. Journal of Cotton Researches of Iran, 7(1): 99-110 (In Farsi).
Henderson, C.F., and Tilton, E.W. 1955. Test with acaricides against the brown wheat mite. Journal of Economic Entomology, 48: 157-161.
Hernandez, M.M., Martinez-Villar, E., Peace, C., Perez-Moreno, I., and Marco, V. 2012. Compatibility of the entomopathogenic fungus Beauveria bassiana with flufenoxuron and azadirachtin against Tetranychus urticae. Experimental and Applied Acarology, 58: 395-405.
Hoelmer, K.A., Osborne, L.S., and Yokomi, R.K. 1990. Effects of neem extracts on beneficial insects in greenhouse culture. Proceeding, USDA Neem Workshop, Beltsville MD 100-105.
Iwasa, T., Motoyama, N., Ambrose, J.T., Roe, R.M. 2004. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Protection, 23: 371-378.
Izadmehr, H., Farazmand, H., Oliaei-Torshiz, A., Sirjani, M., and Jebeleh, E. 2015. Effect of Processed kaolin clay (WP 95% ) on Cotton Whitefly, Bemisia tabaci Gennadius. Pesticides in Plan Protection Sciences, 3(1): 39-49 (In Farsi with English summary).
Jervis, M.A., Kidd, N.A.C., and Heimpel, G.E. 1996. Parasitoid adult feeding behavior and biocontrol a review. Biocontrol News and Information, 17: 11-26.
Johnson, S., Dureja, P., and Dhingra, S. 2003. Photostablizers for azadirachtin-A (a Neem-based pesticide). Journal of Environmental Sciences, 38: 451-462.
Jones, D.R. 2003. Plant viruses transmitted by whiteflies. European Journal of Plant Pathology, 109: 195-219.
Khan, I.A., and Wan, F.H. 2015. Life history of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) biotype B on tomato and cotton host plants. Journal of Entomology and Zoology Studies, 3(3): 117-121.
Khooshe-Bast, Z., Sahebzadeh, N., Ghaffari-Moghaddam, M., and Mirshekar, A. 2016. Insecticidal effects of zinc oxide nanoparticles and Beauveria bassiana TS11 on Trialeurodes vaporariorum (Westwood, 1856) (Hemiptera: Aleyrodidae). Acta agriculturae Slovenica, 107(2): 299-309.
Kirthi, A.V., Rahuman, A.A., Rajakumar, G., Marimuthu, S., Santhoshkumar, T., et al. 2011. Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wet chemical route against blood feeding parasites. Parasitology Research, 109: 461-472.
Kumar, P., Poehling, H.M., and Borgemeister, C. 2005. Effects of different application methods of azadirachtin against sweetpotato whitefly, Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) on tomato plants. Journal of Applied Entomology, 129: 489-497.
Kumar, P., and Poehling, H.M. 2006. Persistence of soil and foliar azadirachtin treatments to control sweetpotato whitefly, Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) on tomatoes under controlled (laboratory) and field (netted greenhouse) conditions in the humid tropics. Journal of Pest Science, 79: 189-199.
Kumar, P., and Poehling, H.M. 2007. Effects of azadirachtin, abamectin and spinosad on sweetpotato whitefly Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) on tomato plants under laboratory and greenhouse conditions in the humid tropics. Journal of Economic Entomology, 100: 411-420.
Kumar, P., Whitten, M., Thoeming, G., Borgemeister, C., and Poehling, H.M. 2008. Effects of bio-pesticides on Eretmocerus warrae (Hym. Aphelinidae), a parasitoid of Bemisia tabaci (Hom., Aleyrodidae). Journal of Applied Entomology, 132: 605-613.
Lacey, L.A., Wraight, S.P., and Kirk, A.A. 2008. Classical biological control of Bemisia tabaci in the United States - A Review of Interagency Research and Implementation. Entomopathogenic fungi for control of Bemisia tabaci biotype B: Foreign exploration, research and implementation, Gould J, Hoelmer K, Goolsby J (Eds). Progress in Biological Control, Vol 4. Springer, Dordrecht, The Netherlands. pp 33-69.
Mehrabadi, H.R. 2017. Effect of different planting dates and methods on quantity and quality traits of Varamin cotton cultivar. Journal of Crop Production and Processing, 7 (2): 61-72. Mashhad (In Farsi with English summary).
Mitchell, P.L., Gupta, R., Singh, A.K., and Kumar, P. 2004. Behavioural and developmental effects of neem extracts on Clavigralla scutellaris (Hemiptera: Heteroptera: Coreidae) and its egg parasitoid, Gryon Fulviventre (Hymenoptera: Scelionidae). Journal of Economic Entomology, 97: 916-923.
Mohan, M.C., Narasimha, P., Reddy, N.P., Devi, U.K., Kongara, R., and Sharma, H.C. 2007. Growth and insect assays of Beauveria bassiana with neem to test their compatibility and synergism. Biocontrol Science and Technology, 17: 1059-1069.
Muniz, M., and Nombela, G. 2001. A new clip-cage for biological studies. Published by EWSN: John Innes Centre, Norwich Research Park, Conley Lane, Norwich NR47UH United Kingdom.
Nagajyothi, P.C., MinhAn, T.N., Sreekanth, T.V.M., Lee, J.I., Lee, D.J., and Lee, K.D. 2013. Green route biosynthesis: characterization and catalytic activity of ZnO nanoparticles. Materials Letters, 108: 160-163.
Nauen, R., and Denholm, I. 2005. Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Archives of Insect Biochemistry and Physiology, 58: 200-215.
Noorbakhsh, S. 2018. List of important pests, diseases, and weeds of major agricultural crops, pesticides and recommended methods for their control. Ministry of Agriculture Jihad and Plant Protection Organization, 209 p (In Farsi).
Núñez-López, D.C., Ramírez-Godoy, A., and Restrepo-Diaz, H. 2015. Impact of kaolin particle film and synthetic insecticide applications on whitefly populations Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) and physiological attributes in bean (Phaseolus vulgaris) crop. Hortscience, 50: 1503-1508.
Oliveira, M.R.V., Henneberryb, T.J., and Andersonc, P. 2001. History, current status, and collaborative research projects for Bemisia tabaci. Crop Protection, 20: 709-723.
Oliveira, R.C., and Neves, P.M.O.J. 2004. Compatibility of Beauveria bassiana with acaricides. Neotropical Entomology, 33 (3): 353-358.
Owolade, O.F., Ogunleti, D.O., and Adenekan, M.O. 2008. Titanium Dioxide affects disease development and yield of edible cowpea. Electronic Journal of Environmental, Agricultural and Food Chemistry, 7(50): 2942 -2947.
Poprawski, T.J., Greenberg, S.M., and Ciomperlik, M.A. 2000. Effect of Host Plant on Beauveria bassiana and Paecilomyces fumosoroseus Induced Mortality of Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Environmental Entomology, 29 (5): 1048-1053.
Padmavathy, N., and Vijayaraghavan, R. 2008. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Science and Technology of Advanced Materials, 9: 1-7.
Park, J.Y., Baek, M.J., Choi, E.S., Woo, S., Kim, J.H. et al. 2009. Paramagnetic ultra small gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter and in vivo T1 MR images. ACS Nano, 3 (11): 3663-3669.
Quesada-Moraga, E., Maranhao, E., Valverde-Garcia, P., and Santiago-Alvarea, C. 2006. Selection of Beauveria bassiana isolates for control of the whiteflies Bemisia tabaci and Trialeurodes vaporariorum on the basis of their virulence, thermal requirements, and toxicogenetic activity. Biological Control, 36: 274-287.
Quintela, E.D., and McCoy, C.W. 1998. Synergistic effect of imidacloprid and two entomopathogenic fungi on the behavior and survival of larvae of Diaprepes abbreviatus (Coleoptera: Curculionidae) in soil. Journal of Economic Entomology, 91: 110-122.
Rose, M.G., Zolnerowich, G., and Hunter, M.S. 1995. Bemisia: taxonomy, biology, damage, control and management, intercept. Systematics, Eretmocerus, and biological control, pp 459-477. Gerling D, Mayer R T (Eds) Andover, UK.
Rouhani, M., Samih, M.A., Aslani, A., and Beiki, K. 2011. Side effect of nano-ZnO-Tio2-Ag mix-oxide nanoparticles on Frankliniella occidentalis Pergande (Thys.: Thripidae). In Proceedings Symposium: Third International Symposium on Insect Physiology, Biochemistry and Molecular Biology. East China Normal University, Shanghai, China. 2-5.
Samih, M.A., Rouhani, M., Aslani, A., and Beiki, K. 2011. Insecticidal properties of amitraz, nano-amitraz, nano-ZnO and nano–ZnO-Al2O3 nanoparticles on Agonoscena pistaciae (Hem.: Aphelaridae). In Proceedings Symposium: Third International Symposium on Insect Physiology, Biochemistry and Molecular Biology. East China Normal University. Shanghai, China. 131.
Sarailoo, M.H., and Poorghaz, A.H. 2006. The effect of some plant origin materials against Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) in cotton field of Gonbad. Journal of Agricultue Science Natural Resources,13(4): 62-72 (In Farsi with English summary).
Schmutterer, H. 1990. Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annual Review of Entomology, 35: 271-297.
Silva, C.A.D., and Ramalho, F.S. 2013. Kaolin spraying protects cotton plants against damages by boll weevil Anthonomus grandis Boheman (Coleoptera: Curculionidae). Journal of Pest Science, 86: 563-569.
Sohrabi, F., Shishehbor, P., Saber, M., and Mosaddegh, M.S. 2013. Lethal and sublethal effects of midacloprid and buprofezin on the sweetpotato whitefly parasitoid Eretmocerus mundus (Hymenoptera: Aphelinidae). Crop Protection, 45: 98-103.
SPSS. 2013.Version 22. SPSS, Chicago, IL, USA.
Stansly, P.A., Calvo, F.J., and Urbaneja, A. 2005. Release rates for control of Bemisia tabaci (Homoptera: Aleyrodidae) biotype “Q” with Eretmocerus mundus (Hymenoptera: Aphelinidae) in greenhouse tomato and pepper. Biological Control, 35:124-133.
Stone, D., Harper, B.J., Lynch, I., Dawson, K., and Harper, S.L. 2010. Exposure assessment: recommendations for nanotechnology-based pesticides. International Journal of Occupational and Environmental Health, 16(4): 467-474.
Taheri Sarhozakia, M., Aramideh, S., Akbariana, J., and Pirsa, S. 2020. Effects of ZnO nanoparticles and Kaolin in combination with NeemAzal-T/S against Bemisia tabaci and its parasitoid Eretmocerus mundus on cotton. Chemical Review and Letters, 3: 131-139.
Tomlin, C.D.S. 2009. The Pesticide Manual, 15th ed. Crop Protection Publications,Hampshire. 1457 pp.
Touhidul Islam Md., Castle, S.J., and Ren, S. 2010. Compatibility of the insect pathogenic fungus Beauveria bassiana with neem against sweetpotato whitefly, Bemisia tabaci, on eggplant. Entomologia Experimentalis et Applicata, 134: 28-34.
Urbaneja, A., and Stansly, P.A. 2004. Host suitability of different instars of the whitefly Bemisia tabaci “biotype Q” for Eretmocerus mundus. Bio Control, 49: 153-161.
Valencia, E., and Khachatourians, G.G. 1998. Integrated pest management and enthomopathogenic fungal biotechnologyin the Latin America. I. Opportunities in a global agriculture. Revista Colombiana de Ciencias Pecuarias, 22: 193-202.
Vey, A., and Fargues, J. 1977. Histological and ultrastructural studies of Beauveria bassiana infection in Leptinotarsa decemlineata Say larvae during ecdysis. Journal of Invertebrate Pathology, 30: 207-215.
Wand, S.J.E., Theron, K.I., Akerman, J., and Marais, S.J.S. 2006. Harvest and post-harvest apple fruit quality following applications of kaolin particle film in South African orchards. Scientia Horticulturae, 107: 271-276.
Zhang, L., Jiang, Y., Ding, Y., Povey, M., and York, D. 2007. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). Journal of Nanoparticle Research, 9 (3): 479-489.