اثر کودهای زیستی قارچی و باکتریایی بر تغییرات بیوشیمیایی و مولکولی گیاه نخود آلوده‏ شده به بیماری پژمردگی فوزاریومی

نوع مقاله : علمی پژوهشی-فارسی

نویسندگان

1 دانشیار‌ بیوتکنولوژی‌ گیاهی،‌ گروه‌ زیست شناسی،‌ پردیس‌ علوم،‌ دانشگاه‌ یزد، یزد، ایران

2 دانشجوی سابق ارشد بیماری‌شناسی گیاهی، گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

3 استادیار بیماری‌شناسی گیاهی، گروه زیست‌شناسی، دانشکده علوم، دانشگاه بیرجند، بیرجند، ایران

چکیده

پژمردگی فوزاریومی ناشی از Fusarium oxysporum f.sp. ciceris یکی از مهم‌ترین و مخرب‏ ترین بیماری‏ های نخود در ایران می‌باشد. در این تحقیق اثر کودهای زیستی نیتروکسین و قارچ-ریشه در القا مقاومت نخود ایرانی (رقم ILC482) تحت تنش با بیمارگر ایجاد‏کننده پژمردگی بررسی شد. تغییرات در میزان تعدادی از آنزیم های آنتی ‏اکسیدانی و تجزیه‏ و‏تحلیل بیان ژن‏ های کیتیناز و سوپراکسید دیسموتاز به ترتیب با استفاده از روش های طیف سنجی و بیان ژن در زمان واقعی مورد بررسی قرار گرفت. بیشترین میزان فنل (۹۱/۳  میلی‏ گرم بر وزن تَر) و پروتئین کل (۲۹/۵۰ میلی‏ گرم بر میلی‏ لیتر) به ترتیب در تیمارهای نیتروکسین و قارچ ریشه مشاهده گردید. بیشترین میزان تغییرات هر سه آنزیم مربوط به تیمار قارچ-ریشه در بازه زمانی ۷۲ ساعت بعد از آلودگی بود. همچنین، مقایسه میانگین داده ‏های بیان ژن، افزایش حداکثری نسخه ‏برداری هر دو ژن را در بازه زمانی ۷۲ ساعت بعد از آلودگی نشان داد. با توجه به نتایج حاصل، نتیجه‏ گیری می‏شود که کودهای زیستی، مقاومت گیاه به بیماری را از طریق تغییر در میزان فعالیت‏‏ های بیوشیمیایی و تغییر در سطح بیان ژن‏ های درگیر مقاومت، افزایش می ‏دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Impact of fungi and bacterial-based bio-fertilizers on biochemiacal and molecular changes and induced resistance of checkpea under fusarium wilting disease

نویسندگان [English]

  • S. K. Sabbagh 1
  • A. Karimi 2
  • M. Ghorbani 3
1 Associate Professor of Plant biotechnology, Campus of Science, Department of Biology, Yazd University, Yazd, Iran
2 M.Sc. Graduate, Department of Plant Protection, Faculty of Agricultural, University of Zabol, Zabol, Iran
3 Assistance Professor of Plant Pathology, Department of Biology, Faculty of Biology, University of Birjand, Birjand, Iran
چکیده [English]

Background and Objectives
Chickpea is an important grain legume in Asia, and makes a significant contribution to the food and nutrition security of the people. Fusarium wilt is an important disease of chickpea, causing significant yield loss. This malady is the most important and destructive soil-borne disease of chickpea in Iran. Excessive use of chemical fungicides to control this soil-born pathogen can have adverse effects on human health and environment, and can lead to fungal resistance to fungicides. Increasing induced resistance using resistance inducers as bio-fertilizers can be considered as an alternative method to plant disease control. The use of nitroxine a bio-fertilizer containing Azosprillium and Azotobacter species as well as mycorrhizal fungi to induce systemic resistance mechanisms has been demonstrated in different plants under biotic stress. The aim of this study was to investigate the effect of bio-fertilizers to induce acquired resistance in chickpea plant under pathogen stress as compared to non-infected plants.
Materials and Methods
The change of some antioxidant enzymes and gene expression analysis was examined to evaluate the effect of biofertilizers on increasing resistance in chickpea plants infected with Fusarium oxysporum fsp. ciceri. A factorial experiment based on complete randomized block design with three replications was conducted under greenhouse conditions in 2014. The eight treatments included: 1) Plant control without infection (sh), 2) Fusarium oxysporum (Foc), 3) Mycorrhiza (Gi), 4) Nitroxin (N), 5) Mycorrhiza+Nitroxin+Infection (GI+N+F), 6) Mycorrhiza+Nitroxin (GI+N), 6) Mycorrhiza + Fusarium oxysporum (Gi+F) and 8) Nitroxin+Fusarium (N+F). Mycorrhiza, Fusarium oxysporum and Nitroxin+Fusarium (M+F+N) were used in this study. Catalase, Proxidase, and Polyphenoloxidase activity was assessed by spectrophotometer with corresponding wavelengths. Total RNA was isolated using an extraction kit, according to the manufacturer’s protocol. Real-time RT-PCR was performed in a thermocycler using the following program: 5 min at 94 °C, followed by 35 cycles of 30sec at 95°C, 30 min at 59°C and 30 min at 72 °C, with final extension for 10min at 72°C. All acquired data were analyzed using SAS software version 9 and mean values were compared using Duncan's multiple range test. The changes of transcript level were measured via a comparative technique. Actin genes were used as internal reference.
Results
Data analysis revealed that the highest rate of total phenol and protein (50/292 mg/mL) in treated plants was related to nitroxin and mycorrhiza treatments, respectively. The greatest change in all three enzymes was observed in mycorrhiza treatment 72h after plant infection. Mean comparison of gene expression data at different time intervals showed a high expression level 72h after plant infection in mycorrhizal application. Our results indicated that the maximum effect of bio-fertilizer application occurred 72h following plant infection with the pathogen. Application of both biofertilizers without Fusarium infection did not show any significant change in the expression level of the two tested gene.
Discussion
Biofertilizer agents can improve plant growth through several different mechanisms such as protecting the plant under stressful conditions and defense against plant pathogen which can lead to reduced disease and death. The increase of total phenol and protein as the precursor of plant defense mechanism through apply biofertilizers in infected plants indicated the efficiency of these compounds to reduce disease. Antioxidant enzymes as a biomarker were used to evaluate the effect of exogenic compounds on increasing plant resistance against biotic stress. As with a similar work, we found a correlation between biofertilizer application and enzyme activity. Other parameters such as phenotypic characters and yield components can be used as a marker to investigate the effect of biofertilizers in these domains. Analysis of variance of the data related to gene expression confirmed the efficiency of biofertilizers on inducing resistance. Based on our results, we recommended use of biofertilizers in a single or mixture form to improve growth conditions in stressed plants especially under biotic stress. To make the bio-fertilizer more efficient in the field, a coordinated work by different science domains as bacteriology, chemistry, genetics, and agronomy as well as farmers as bio-fertilizer consumers seems necessary. This coordination could facilitate the adaptation of fungi and bacterium-based bio-fertilizers to different agriculture systems.
 

کلیدواژه‌ها [English]

  • Mycorrhizae
  • Nitroxin
  • Chitinase
  • Superoxide dismutase
  • Gene expression
  • Antioxidant enzymes
Bahrani, A., Pourreza, J., and Joo, M.H. 2010. Response of winter wheat to co-inoculation with Azotobacter and arbescular mycorrhizal fungi (AMF) under different sources of nitrogen fertilizer. American-Eurasian Journal of Agricultural and Environmental Sciences, 9(4): 376–84.
Bao, J.R., and Lazarovits, G. 2001. Differential colonization of tomato roots by nonpathogenic and pathogenic Fusarium oxysporum strains may influence Fusarium wilt control. Phytopathology, 91(5): 449–456.
Baxter, A., Mittler, R., and Suzuki, N. 2014. ROS as key players in plant stress signalling. Journal of Experimental Botany, 65(5): 1229–1240.
Blokhina, O., Virolainen, E., and Fagerstedt, K.V. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 91(2): 94–100.
Cao, H., Glazebrook, J., Clarke, J.D., Volko, S., and Dong, X. 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell, 88(1): 57–63.
Chen, J.H. 2006. The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. Proceedings of the International workshop on sustained management of the soil-rhizosphere system for efficient crop production and fertilizer use, Krom Phatthanā Thīdin, Thailand,  P.169.
Chérif, M., Arfaoui, A., and Rhaiem, A. 2007. Phenolic compounds and their role in bio-control and resistance of chickpea to fungal pathogenic attacks. Tunisian Journal of Plant Protection, 2(1): 7–21.
El-Katatny, M., Somitsch, W., Robra, K.-H., El-Katatny, M., and Gübitz, G. 2000. Production of chitinase and β-1, 3-glucanase by Trichoderma harzianum for control of the phytopathogenic fungus Sclerotium rolfsii. Food Technology and Biotechnology, 38(3): 173–180.
Diagne, N., Ngom, M., Djighaly, P. I., Fall, D., Hocher, V., and Svistoonoff, S. 2020. Roles of arbuscular mycorrhizal fungi on plant growth and performance: Importance in biotic and abiotic stressed regulation. Diversity, 12(10): 370–379.
Elavarthi, S., and Martin, B. 2010. Spectrophotometric assays for antioxidant enzymes in plants. Methods in Molecular Biology, 639: 273–281.
Jahan, M., Shazad, U., Naqvi, S., Tahir, I., Abbas, T., and Iqbal, M. 2020. Effects of Mesorhizobium ciceri and Biochar on the growth, nodulation and antifungal activity against root pathogenic fungi in chickpea (Cicer arietinum L.). Journal of Plant Pathology and Microbiology, 11(2): 520–532.
Gazimohseni, V., and Sabbagh, S.K. 2016. Effect of chitosan on gene expression and activity of enzymes involved in resistant induction to fusariuse of wheat. Iranian Journal of Plant Protection, 46(3): 363–39 (In Farsi with English summary).
Gill, S.S., Anjum, N.A., and Gill, R. 2015. Superoxide dismutase mentor of abiotic stress tolerance in crop plants. Environmental Science and Pollution Research, 22(14): 10375–10394.
Gonçalves-Soares, D., Zanette, J., Yunes, J.S., Yepiz-Plascencia, G.M., and Bainy, A.C. 2012. Expression and activity of glutathione S-transferases and catalase in the shrimp Litopenaeus vannamei inoculated with a toxic Microcystis aeruginosa strain. Marine Environmental Research, 75: 54–61.
Gupta, D.K., Palma , J.M., and Corpas, F.J. 2018. Antioxidants and antioxidant enzymes in higher plants. Springer international publishing. Switzerland.
Hammerschmidt, R., Métraux, J.P., and Van Loon, L. 2000. Inducing resistance: a summary of papers presented at the First International Symposium on Induced Resistance to Plant Diseases, Corfu, May 2000. European Journal of Plant Pathology, 107: 1–6.
Joshi, k., Parthasarathy Rao, P., Gowda, R.B., Jones, S.N., Silim, K.B., and Jagdish, K. 2010. The World chickpea and pigeonpea economies facts, trends, and outlook. ICRISAT International Crops Research Institute for the Semi-Arid TropicsPatancheru , Andhra Pradesh, India: PP. 51.
Kapoor, D., Singh, S., Kumar, V., Romero, R., Prasad, R., and Singh, J. 2019. Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene, 19: 100–120.
Kong, X., Wei, B., and Gao, Z. 2018. Changes in membrane lipid composition and function accompanying chilling injury in bell peppers. Plant and Cell Physiology, 59(1): 167–178.
Karimzadeh Asl, K., and Hatami, M. 2019. Application of zeolite and bacterial fertilizers modulates physiological performance and essential oil production in dragonhead under different irrigation regimes. Acta Physiologiae Plantarum, 41(1): 17–29.
Lamia, B., Messaoud, B., Ahmed, C., and Lakhdar, K. 2017. Activity of plant growth promoting rhizobacteria (PGPRs) in the biocontrol of tomato Fusarium wilt. Plant Protection Science, 53(2): 78–84.
Liu, J.J., and Ekramoddoullah, A.K. 2006. The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiological and Molecular Plant Pathology, 68(1–3): 3–13.
Mayer, A.M. 2006. Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry, 67(21): 2318–23131
Nagpal, S., Sharma, P., Sirari, A., and Gupta, R. 2020. Coordination of Mesorhizobium sp. and endophytic bacteria as elicitor of biocontrol against Fusarium wilt in chickpea. European Journal of Plant Pathology, 158(1): 143–161.
Naing, K.W., Nguyen, X.H., and Anees, M. 2015. Biocontrol of Fusarium wilt disease in tomato by Paenibacillus ehimensis KWN38. World Journal of Microbiology and Biotechnology, 31(1): 165–174.
Pfaffl, M.W. 2001. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research, 29(9): 45–52.
Sabbagh, E., Sabbagh, S.K., Panjehkeh, N., and Bolok-Yazdi, H.R. 2018. Jasmonic acid induced systemic resistance in infected cucumber by Pythium aphanidermatum. Journal of Agricultural Sciences, 24(1): 143–152 (In Farsi with English summary).
Sabbagh, S., Kermanizadeh, B., Gholamalizadeh, A., and Sirousmehr, A. 2016. Effects of fertilizer treatments on components, performance components and induce resistance to wheat scab disease. Iranian Journal of Filed Crop Science, 47(1): 77–85 (In Farsi with English summary).
Sabbagh, S., Poorabdollah, A., Sirousmehr, A., and Gholamalizadeh, A.A. 2017a. Bio-fertilizers and systemic acquired resistance in Fusarium infected wheat. Journal of Agricultural Science and Technology, 19(2): 453–464.
Sabbagh, S., Roudini, M., and Panjehkeh, N. 2017b. Systemic resistance induced by Trichoderma harzianum and Glomus mossea on cucumber damping-off disease caused by Phytophthora melonis. Archives of Phytopathology and Plant Protection, 50(7–8): 375–388.
Sabbagh, S., and Valizadeh, S. 2016. Effect of bio-fertilizers on greenhouse cucumber resistant to damping-off disease caused by Pythium aphanidermatum and increase of yield component. Biological Control of Pests and Plant Diseases, 5(1): 111–122 (In Farsi with English summary).
Saikia, R., Singh, B., Kumar, R., and Arora, D. 2005. Detection of pathogenesis-related proteins–chitinase and β-1, 3-glucanase in induced chickpea. Current Science, 4(2): 659–663.
Salehpour, M., Etebarian, H., Roustaei, A., Khodakaramian, G., and Aminian, H. 2005. Biological control of common root rot of wheat (Bipolaris sorokiniana) by Trichoderma Isolates. Plant Pathology Journal, 4(1): 85–90.
Shih, C.-Y.T., Khan, A.A., Jia, S., Wu, J., and Shih, D.S. 2001. Purification, characterization, and molecular cloning of a chitinase from the seeds of Benincasa hispida. Bioscience, Biotechnology and Biochemistry, 65(3): 501–509.
Shouwei, L., Fengzhi, W., and Yanling, M. 2009. Effects of Fusarium wilt pathogen on the enzyme activity of cucumber cultivars of different resistance. Plant Protection, 15(2): 55–65.
Singh, D. 2019. Allelochemical Stress, ROS and Plant Defence System. International Journal of Biological Innovations, 1(1): 31–35.
Smith, J.L., De Moraes, C.M., and Mescher, M.C. 2009. Jasmonate‐and salicylate‐mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Management Science, 65(5): 497–503.
Taranto, F., Pasqualone, A., and Mangini, G. 2017. Polyphenol oxidases in crops: biochemical, physiological and genetic aspects. International Journal of Molecular Sciences, 18(2): 373–384.
Tilak, K., Ranganayaki, N., and Pal, K. 2005. Diversity of plant growth and soil health supporting bacteria. Current Science, 89(1): 136–150.
Tarafdar, A., Rani, T.S., Chandran, U., Ghosh, R., Chobe, D.R., and Sharma, M. 2018. Exploring combined effect of abiotic (soil moisture) and biotic (Sclerotium rolfsii Sacc.) stress on collar rot development in chickpea. Frontiers in Plant Science, 9(1): 1154–1165.
Varshney, R.K., Song, C., and Saxena, R.K. 2013. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology, 31(3): 240–246.
Yedidia, I., Benhamou, N., and Chet, I. 1999. Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Applied and Eenvironmental Microbiology, 65(3): 1061–1070.
Ziv, C., Zhao, Z., Gao, Y.G., and Xia, Y. 2018. Multifunctional roles of plant cuticle during plant-pathogen interactions. Frontiers in Plant Science, 9: 1088–1100.