اثر دما روی واکنش تابعی کنه شکارگر Macrocheles muscaedomesticae (Acari: Macrochelidae) با تغذیه از تخم مگس خانگی، Musca domestica (Dip.: Muscidae)

نوع مقاله : علمی پژوهشی-فارسی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد حشره شناسی کشاورزی، گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

2 دانشیار، گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

3 استاد، گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

4 دکترای حشره شناسی کشاورزی، گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

گونه Macrocheles muscaedomesticae (Scopoli)شناخته شده‌ترین گونه در کودهای گاوی و ماکیان در جهان است که روی مگس­‌های مدفوع تغذیه کرده و به وسیله آ‌ن‌ها هم منتشر می‌شود. مطالعات در دنیا از جمله خوزستان نشان داده است که کنه شکارگر غالبِ مراحل نابالغ مگس خانگی، Musca domestica L.، در کودهای دامی همین گونه است. در این پژوهش واکنش تابعی کنه شکارگر ماده M. muscaedomesticae در انکوباتور و در دو دمای 1 ± 27 و 1 ± 33 درجه سلسیوس، رطوبت نسبی 5 ± 65 درصد و دوره نوری 10:14 (روشنایی: تاریکی) روی تخم مگس خانگی مطالعه شد. برای این منظور تراکم‌های 1، 2، 4، 8، 12، 16، 25، 30، 40 و 80 عددی از تخم مگس در اختیار کنه کامل ماده جفت‌گیری کرده 4 روزه قرار داده شد. واکنش تابعی کنه M. muscaedomesticae روی تراکم‌های مختلف تخم مگس خانگی با استفاده از رگرسیون لجستیک در دمای 27 درجه از نوع سوم و در دمای 33 درجه از نوع دوم تعیین شد. پارامترهای واکنش تابعی با استفاده از معادله راجرز مشخص شد. نرخ حمله و زمان دست‌یابی به ترتیب در دمای 27 درجه سلسیوس، 0204/0 بر ساعت و 6497/0 ساعت و در دمای 33 درجه سلسیوس، 6493/0 بر ساعت و 4769/0 ساعت به دست آمد. بیش‌ترین نرخ شکارگری (T/Th) در دمای 33 درجه و 32/50 تخم در روز بود و در دمای 27 درجه به 94/36 تخم در روز کاهش یافت. بنابراین دما بر نوع واکنش تابعی، زمان دست‌یابی و نرخ شکارگری موثر بود. نتایج مطالعه حاضر می­‌تواند درک بهتری از برهم‌کنش کنهM. muscaedomesticae و تخم‌های مگس خانگی ارائه داده و نقش موثر آن را به عنوان یک عامل کنترل بیولوژیک نشان دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of temperature on the functional response of the predatory mite Macrocheles muscaedomesticae (Acari: Macrochelidae) by feeding on eggs of the house fly, Musca domestica (Dip.: Muscidae)

نویسندگان [English]

  • R. Shiralizadeh 1
  • M. Esfandiari 2
  • P. Shishehbor 3
  • S. Farahi 4
1 Gratuated M.Sc. student of Agricultural Entomology, Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Associate Professor, Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 Professor, Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
4 PhD of Agricultural Entomology, Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

Background and Objectives
Macrocheles muscaedomesticae (Scopoli) is the most common mite found in cow and poultry manure worldwide. It feeds on manure-dwelling flies and spreads via flies. According to studies conducted in Khuzestan, Iran, and other countries, this is the dominant predator mite of immature the house flies, Musca domestica L. in domestic animal manures.
Control strategies for dipterous pest species continue to rely heavily on insecticides, even though these species have developed resistance to most insecticides currently available due to their widespread use. Increased public and farmer awareness have prompted scientists to investigate alternative methods for managing these filth flies. The purpose of this study was to determine the effect of two temperatures on M. muscaedomesticae'sfunctional response to varying egg densities of M. domestica.
Materials and Methods
In this study, the functional response of female predator mite M. muscaedomesticae was examined on the house fly eggs in an incubator at two constant temperatures of 27 ± 1°C and 33 ± 1°C, 65 ± 5% RH, 14:10 h (L: D). Densities of 1, 2, 4, 8, 12, 16, 25, 30, 40, and 80 house fly eggs were offered to mated adult female mites. Before the experiments, female predators were fed and mated for 48 hours and then starved for 24 hours. Each treatment was replicated ten times. After 24 hours of exposure, the number of preys killed by each predator was recorded.
Results
By logistic regression, the functional response of M. muscaedomesticae to varying densities of the house fly eggs was classified as type III in 27°C and type II in 33°C. Rogers' equation was used to calculate the functional response parameters. At 27°C, the attack coefficient and handling time were 0.0204 h-1 and 0.6497 h, respectively, and 0.6493 h-1 and 0.4769 h at 33°C. At 33°C, the maximum attack rate (T/Th) was 50.32 eggs/day and 36.94 eggs/day at 27°C. R2 values for M. muscaedomesticae at two constant temperatures were estimated to be 0.935 and 0.996 at 27°C and 33°C, respectively. Only at 40 and 80 prey densities did the analysis of variance reveal a significant difference in adult females' daily prey consumption between two constant temperatures. Additionally, there were significant differences between all densities at 33°C and the majority of densities at 27°C.
Discussion
The temperature affected the type of functional response, the handling time, and the maximum attack rate. The findings of this study may contribute to a better understanding of the mite M. muscaedomesticae's interaction with the house fly eggs and could confirm M. muscaedomesticae's suitability as a biological control agent.

کلیدواژه‌ها [English]

  • foraging behavior
  • predation
  • temperature
  • handling time
Allahyari, H.,‎ Azmayeshfard, P., and‎ Nozari, J.‎ 2004. ‎Effects of host on functional response of offspring in two populations of Trissolcus grandis on the sunn pest. ‎Journal of Applied Entomology‎, ‎128‎: ‎39‎-‎43.
 Axtell, R.C. 1963. Effect of Macrochelidae (Acarina: Mesostigmata) on house fly prodaction from dairy cattle manure. Journal of Economic Entomology, 56: 317-321.
Axtell, R.C. 1969. Macrochelidae (Acarina: Mesostigmata) as biological control agents for synanthropic flies. In Evans, G.O. (Ed.). Proceedings of the Second International Congress of Acarology, Akademial Kiado, Budapest, pp: 401-416.
 De Clercq, P., Mohaghegh, J., and Tirry, L. 2000. Effect of host plant on the functional response of the predator Podisus nigrispinus (Heteroptera: Pentatomidae). Biological Control, 18: 65-70.
 Ding- Xu, L., Juan, T., and Zuo- Rui, S. 2007. Functional response of the predator Scolothrips takahashii to howthorn spider mite, Tetranychus viennensis: effect of age and temperature. BioControl, 52: 41-61.
 Farahi, S., Shishehbor, P., and Nemati, A. 2018a. Bisexual and oedipal reproduction of Macrocheles muscaedomesticae (Acari, Macrochelidae) feeding on Musca domestica (Diptera, Muscidae) eggs. Acarologia, 58(2): 430-441.
 Farahi, S., Shishehbor, P., and Nemati, A. 2018b. Some mesostigmatic mites (Acari: Parasitiformes) of Khuzestan province, southwestern Iran. Persian Journal of Acarology, 7(4): 323-344.
 Farhadi, R., Allahyari, H., and Chi, H. 2015. Functional response and mutual interference of Amblyseius swirskii (Acari: Phytoseiidae) on greenhouse whitefly Trialeurodes vaporariorum on cucumber. Plant Protection (Scientific Journal of Agriculture), 38(2): 37-48 (In Farsi with English abstract).
 Farish, D.J., and Axtell, R.C. 1971. Phoresy redefined and examined in Macrocheles muscaedomesticae (Acarina: Mesostigmata). Acarologia, 13: 16-29.
 Fathipour, Y., and Maleknia, B. 2016. Mite Predators. In Omkar (Ed.). Ecofriendly pest management for food security. Elsevier Pub. pp. 329-366.
 Fathipour, Y., Karimi, M., Farazmand, A., and Talebi, A.A. 2017. Age-specific functional response and predation rate of Amblyseius swirskii (Phytoseiidae) on two-spotted spider mite. Systematic and Applied Acarology, 22(2): 159-169.
 Filipponi, A. 1964. The Feasibility of mass producing Macrochelid mites for field trials against housefly. Bulletin of World Health Organization, 31: 499-501.
 Filipponi, A., and Di Delupis, G.D. 1963. On the food habits of some Macrochelids (Acari: Meso.) associated in the field whith synanthropicies. Rivista di Parassitologia, 24: 277-288.
 Filipponi, A., and. Petrelli, M.G. 1967. Autoecology and capacity for increase in numbers of Macrocheles muscaedomesticae Scopoli (Acari: Mesostigmata). Rivista di Parassitologia, 28(2): 129-156.
 Filipponi, A., Mosna, B., and Petrelli, M.G. 1971. The optimum temperature of Macrocheles muscaedomesticae as a population attribute. Rivista di Parassitologia, 32: 193-218.
 Geden, C.J., and Axtell, R.C. 1988. Predation by Carcinops pumilio (Coleoptera: Histeridae) and Macrocheles muscaedomesticae (Acarina: Macrochelidae) on the house fly (Diptera: Muscidae): functional response, effects of temperature, and availability of alternative prey. Environmental Entomology, 17(4): 739-744.
Geden, C.J., Stinner, R.E., and Axtell, R.C. 1988. Predation by predators of the house fly in poultry manure: effects of predator density, feeding history, interspecific interference, and field conditions. Environmental Entomology, 17(2): 320-329.
 Gerson U., Smiley, R.L., and Ochoa, R. 2003. Mite (Acari) for pest control. Oxford, Blackwell Science Ltd.
 Gotoh, T., Nozawa, M., and Yamaguchi, K. 2004. Prey consumption and functional response of three acarophagous species to eggs of the two-spotted spider mite in the laboratory. Applied Entomology and Zoology, 39(1): 97-105.
 Hassell, M.P. 1978. The dynamics of Arthropod predator-prey System. Princeton University Press, Princeton.
 Hassell, M.P. 2000. The spatial and temporal dynamics of insect host–parasitoid interactions. Oxford University Press, Oxford.
 Ho, C.C. 1985. Mass production of the predaceous mite, Macrocheles muscaedomesticae (Scopoli) (Acarina: Macrochelidae), and its potential use as a biological control agent of house fly, Musca domestica L. (Diptera: Muscidae). Ph.D. Thesis, University of Florida. USA.
 Hyatt, K.H., and Emberson, R.M. 1988. A review of the Macrochelidae (Acari: Mesostigmata) of the British Isles. Bulletin of the British Museum (Natural History), Zoology, 54: 63-125.
 Ito, Y. 1973. The effects of nematode feeding on the predatory efficiency for house fly eggs and reproduction rate of Macrocheles muscaedomesticae (Acarina: Mesostigmata). Medical Entomology and Zoology, 23: 209-213.
 Jalali, M.A., Tirry, L., and De Clercq, P. 2010. Effect of temperature on the functional response of Adalia bipunctata to Myzus persicae. BioControl, 55: 261-269.
 Juliano, S.A. 2001. Nonlinear curve fitting: predation and functional response curve. In: Scheiner, S.M. and Gurevitch, J. (Eds.). Design and analysis of ecological experiments. Oxford University Press. pp. 178-216.
 Kazemi, Sh., and Rajaei, A. 2013. An annotated checklist of Iranian Mesostigmata (Acari), excluding the family Phytoseiidae. Persian Journal of Acarology, 2(1): 63-158.
 Kouhjani Gorji, M., Fathipour, Y., and Kamali, K. 2009. The effect of temperature on the functional response and prey consumption of Phytoseius plumifer (Acari: Phytoseiidae) on the two-spotted spider mite. Acarina, 17(2): 231-237.
 Koveos, D.S., and Broufas, G.D. 2000. Functional response of Euseius finlandicus and Amblyseius andersoni to Panonychus ulmi on apple and peach leaves in the laboratory. Experimental and Applied Acarology, 24: 247-256.
 Mahdian, K., Vantornhout, I., Tirry, L., and De Clercq, P. 2006. Effects of temperature on predation by the stinkbugs Picromerus bidens and Podisus maculiventris (Heteroptera: Pentatomidae) on noctuid caterpillars. Bulletin of Entomological Research, 96: 489–496.
 Masan, P. 2003. Macrochelid of Slovakia (Acari, Mesostigmata, Macrochelidae). Slovak Academy of Science, Institute of Zoology, Bratislava.
 Messina, F.J., and Hanks, J. B. 1998. Host plant alters the shape of the functional response of an aphid predator (Coleoptera: Coccinellidae). Environmental Entomology, 27: 1196-1202.
 Mohaghegh, J., De Clercq, P., and Tirry, L. 2001. Functional response of the predators Podisus maculiventris (Say) and Podisus nigrispinus (Dallas) (Het: Pentatomidae) to the beet army worm, Spodoptera exigua (Hübner) (Lep.: Noctuidae): effect of temperature. Applied Biological Sciences, 125: 131-134.
 Murdouh, W.W., and Oaten, A. 1975. Predation and population stability. Advances in Ecological Research, 9: 2-131.
 Perdikis, D.Ch., Lykouressis, D.P., and Economou, L.P. 1999. The influence of temperature, photoperiod and plant type on the predation rate of Macrolophus pygmaeus on Myzus persicae. Biocontrol, 44: 281–289.
 Pereira, C., and Castro, M.P. 1945. Contribuição para o conhecimento da espécie tipo de “Macrocheles Latr”. (“Acarina”): “M. muscaedomesticae (Scopoli, 1772)” emend. Arquivos do Instituto Biológico, 16: 153–186.
Pervez, A., and Omkar. 2005. Functional response of coccinellid predators: An illustration of a logistic approach. Journal of Insect Science, 5: 1-5.
 Poletti, M., Maia, A. H.N., and Omoto, C. 2007. Toxicity of neonicotinoid insecticides to Neoseiulus californicus and Phytoseiulus macropilis (Acari: Phytoseiidae) and their impact on functional response to Tetranychus urticae (Acari: Tetranychidae). Biological Control, 40: 30-36.
 Rafizadeh Afshar, F., and Latifi, M. 2017. Functional response and predation rate of Amblyseius swirskii (Acari: Phytoseiidae) at tree constant temperatures. Persian Journal of Acarology, 6(4): 299-314.
 Rodriguez, J.C., Singh, P., and Taylor, B. 1970. Manure mites and their role in fly control. Journal of Medical Entomology, 7: 335-341.
 Rogers, D. 1972. Random search and insect population models. Journal of Animal Ecology, 41: 369–383.
 Skirvin, D.J., and Fenlon, J.S. 2003. The effect of temperature on the functional response of Phytoseiulus persimilis (Acari: Phytoseiidae). Acarology, 31: 37-49.
 Stream, F.A. 1994. Effect of prey size on attack components of the functional responses by Notonecta undulata. Oecologia, 98: 57-63.
 Thompson, D.J. 1978. Towards a realistic predator-prey model: the effect of temperature on the functional response and life history of larvae of the damselfly, Ischnura elegans. Journal of Animal Ecology, 47: 757-767.
 Wade, C.F., and Rodriguez, J.G. 1961. Life history of Macrocheles muscaedomesticae (Acarina: Macrochelidae), a predator of the housefly. Annals of the Entomological Society of America, 54: 776-81.
 Yu, J.Z., Chi, H., and Chen, B.H. 2013. Comparison of the life tables and predation rates of Harmonia dimidiate (F.) (Coleoptera: Coccinellidae) fed on Aphis gossypii Glover (Hemiptera: Aphididae) at different temperatures. Biological Control, 64: 1-9.
 Zamani, A.A., Talebi, A.A., Fathipour, Y., and Baniameri, V. 2006. Temperature-dependent funectional response of two aphid parasitoids, Aphidius colemani and Aphidius marricariae (Hymenoptera: Aphididae), on the cotton aphid. Journal of Pest Science, 19: 183-188.
 Ziaei Madbouni, M.A., Samih, M.A., Namvar, P., and Biondi, A. 2017. Temperature-dependent functional response of Nesidiocoris tenuis (Hemiptera: Miridae) to different densities of pupae of cotton whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). European Journal of Entomology, 114: 325-331.