واکنش تابعی وابسته به عمر کفشدوزک Nephus arcuatus (Col.: Coccinellidae)، شکارگر شپشک آردآلود جنوب Nipaecoccus viridis (Hem.: Pseudococcidae)

نوع مقاله : علمی پژوهشی -انگلیسی

نویسندگان

1 استادیار پژوهشکده خرما و میوه‌های گرمسیری، موسسه تحقیقات علوم باغبانی، اهواز، ایران

2 استاد گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

3 دانشیار گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

4 استاد گروه گیاه‌پزشکی، دانشکده کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

چکیده

چکیده: در این پژوهش واکنش تابعی وابسته به عمر ماده بالغ کفشدوزک Nephus arcuatus Kapur ، مهم‌ترین شکارگر (Newstead)  Nipaecoccus viridis در شرایط آزمایشگاهی (دمای 1±30 درجه سلسیوس، رطوبت نسبی 5±65 درصد و دوره نوری به تاریکی 10:14 ساعت) مورد ارزیابی قرار گرفت. ابتدا تراکم‌­های مختلف تخم شپشک (2، 4، 8، 15، 40، 65، 90 و 115 عدد) در اختیار ماده‌های بالغ 3 روزه قرار گرفت و تا 33 روزگی ادامه یافت. نتایج نشان داد سن ماده بالغ روی نوع واکنش تابعی، پارامترهای حاصل از آن شامل زمان دست‌یابی (Th) و نرخ شکارگری (a) موثر است. ماده‌­های بالغ در روزهای 16، 24 و 28ام واکنش تابعی نوع سوم و در بقیه 30 روز عمر خود واکنش تابعی نوع دوم نشان دادند. با افزایش سن ماده‌­های بالغ از 4 تا 17 روز­گی زمان دست‌یابی کاهش و پس از آن افزایش یافت. اگرچه قدرت جست‌وجوگری تحت تاثیر ماده‌­ها قرار نگرفت. حداکثر نرخ شکارگری تحت تاثیر سن ماده‌­ها بود و حداکثر نرخ شکارگری در روزهای 12، 14، 15، 17، 18، 20 و 25 ام از عمر ماده بالغ مشاهده شد. میانگین حداکثر نرخ شکارگری 6/156 تخم در روزهای 17 و 18ام برآورد شد. براساس نتایج بدست آمده بهترین زمان استفاده از این کفشدوزک در یک کنترل بیولوژیک اشباعی، به ویژه هنگامی که  شپشک در مرحله تخم بوده،  25 روز ابتدایی عمر ماده­‌ها می‌­باشد زیرا در این زمان قادرند به طعمه بیش‌تری حمله کنند.

کلیدواژه‌ها


عنوان مقاله [English]

Age-specific functional response of Nephus arcuatus (Col.: Coccinellidae), predator of Nipaecoccus viridis (Hem.: Pseudococcidae)

نویسندگان [English]

  • S. Zarghami 1
  • M.S. Mossadegh 2
  • F. Kocheili 3
  • H. Allahyari 4
  • A. Rasekh 2
1 Assistant Professor, Date Palm and Tropical Fruits Research Center/ Horticultural Science Research Institute/Agricultural Research, Education and Organization (AREEO), Ahvaz,Iran
2 Professor, Department of Plant protection, College of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
3 Associate professor, Department of Plant protection, College of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
4 Professor, Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
چکیده [English]

This study has evaluated the age-specific functional response of the females of Nephus arcuatus Kapur, as the major predator of Nipaecoccus viridis (Newstead). The varying density of N. viridis eggs (2, 4, 8, 15, 40, 65, 90, and 115) were offered to 3 to 33 days of the lifespan of the female adults under laboratory conditions (30 ± 1 °C, 65 ± 5% RH and a photoperiod of 14L: 10D h). The age of female adults affected functional responses, its parameters (handling time (Th) and attack rates (a)), and predation rate by N. arcuatus. Females exhibited functional response type III during 16th, 24th and 28th days of their life. Conversely, the functional response during the other 30 days of female life changed from functional response type III to type II. The handling time decreased significantly from the 4th to 17th day as female age increases and then increased, whereas, the attack rates did not significantly change with higher age of the predator. The maximum attack rate values were found on the 12th, 14th, 15th, 17th, 18th, 20th and 25th days of female adults. The maximum mean predation rate was 156.6 eggs on the 17th and 18th days. Accordingly, the best time to use females of this predator in an inundative biocontrol agent is during the first 25 days of females' age, when the predator is more capable to attack the prey, especially when N. viridis is in the egg stage.

کلیدواژه‌ها [English]

  • Biological control
  • behavioral response
  • handling time
  • Attack rate
Alizadeh, M.S., Mossadegh, M.S., and Esfandiari, M. 2013. Natural enemies of Maconelilcoccus hirstus (Green) (Hemiptera: Pseudococcidae) and their population fluctuations in Ahvaz. Journal of Crop Protection, 2: 13-21.
Asadeh, Gh.A., and Mossadegh M.S. 1993. Investigation on the mealybugs (Pseudococcidae) fauna of the Khuzestan province, Southwest Iran. Plant Protection (Scientific Journal of Agriculture). 16: 76–81 (in Farsi with English summary).
Asadi, R., Talebi, A.A., Khalaghani, J., Fathipour, Y., Moharramipour, S., and Askari Siahooei, M. 2012. Age-specific functional response of Psyllaephagus zdeneki (Hymenoptera: Encyrtidae), Parasitoid of Euphyllura pakistanica )Hemiptera: Psyllidae). Journal of Crop Protection, 1: 1–15.
Bayoumy, M.H. 2011. Foraging behavior of the coccinellid Nephus includens (Coleoptera: Coccinellidae) in response to Aphis gossypii (Hemiptera: Aphididae) with particular emphasis on larval parasitism. Environmental Entomology, 40: 835–843.
CABI/EPPO. 2020. Nipaecoccus viridis. Wallingford: CAB International. Retrieved April 23, 2020, from https://www.cabi.org/isc/datasheet/36335
Cedola, C.V., Sanchez, E.N., and Liljesthrom, G.G. 2001. Effect of tomato leaf hairiness on functional and numerical response of Neoseiulus californicus (Acari: Phytosseiidae). Experimental and Applied Acarology, l25: 819–831.
Chowdhury, S., and Sontakke, P.P. 2015. Biological control of mealybugs on important horticultural crops at Chittoor district in Andhra Pradesh, India. Journal of Entomological Research, 39: 327–331.
Ding-Xu L., Juan T. and Zuo-Rui S.H. 2007. Functional response of the predator Scolothrips takahashii to hawthorn spider mite, Tetranychus viennensis: effect of age and temperature. Biological Control, 52: 41–61.
Dixon, A.F.G., and Agarwala, B.K. 2002. Triangular fecundity function and ageing inladybird beetles. Ecological Entomology, 27: 433–440.
Dixon, A.F.G., and Guo, Y. 2002. Egg and cluster size in ladybird beetles (Coleoptera: Coccinellidae): The direct and indirect effects of aphid abundance. European Journal of Entomology, 90: 457–463.
Farhadi, R., Allahyari, H., and Juliano, S.A. 2010. Functional response of larval and adult stages of Hippodamia variegata (Coleoptera: Coccinellidae) to different densities of Aphis fabae (Hemiptera: Aphididae). Environmental Entomology, 39: 1586–1592.
Farhadi, Z., Esfandiari, M., Mossadegh, M.S., and Shishehbor, P. 2017. Prey stage preference and functional response of the coccinellid Hyperaspis polita, feeding on the mealybug Nipaecoccus viridis. Plant Pest Research. 7: 63–78 (in Farsi with English summary).
Fathipour, Y., Karimi, M., Farazmand, A., and Talebi, A.A. 2017. Age-specific functional response and predation rate of Amblyseius swirskii (Phytoseiidae) on two-spotted spider mite. Systematic and Applied Acarology, 22(2):159–169.
Fathipour, Y., Karimi, M., Farazmand, A., and Talebi, A.A. 2017. Age-specific functional response and predation capacity of Phytoseiulus persimilis (Phytoseiidae) on the two-spotted spider mite. Acarologia, 58(1): 31–40.
Frouzan A., Shishehbor P., Esfandiari M., and Mossadegh, M.S. 2016. Biological characteristics and life table parameters of coccinelid Nephus arcuatus feeding on Phenacoccus solenopsis at different temperatures. Plant Protection (Scientific Journal of Agriculture). 39: 75–84 (in Farsi with English summary).
Gullan, P.J., and Kosztarab, M. 1997. Adaptations in scale insects. Annual Review of Entomology, 42: 23–50.
Hassell, M.P. 1978. The dynamics of arthropod predator prey systems. Princeton University Press.New Jersey.
Hassell, M.P. 2000. The spatial and temporal dynamics of host parasitoid interactions. Oxford University Press, Oxford.
Hassell, M.P., Lawton, J.H., and Beddington, J.R. 1977. Sigmoid functional response by invertebrate predators and parasitoids. Journal of Animal Ecology, 46: 249–262.
Hoddle, M. 2003. The effect of prey species and environmental complexity on the functional response of Franklinothrips orizabensis: a test of the foraging model. Ecological Entomology, 28: 309–318.
Holling, C.S. 1959. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Canadian Entomologist, 91: 293–320.
Holling, C.S. 1965. Functional response of predators to prey density and its role in mimicry and population regulation. Memoirs of the Entomological Society of Canada, 45: 1–60.
Holling, C.S. 1966. Functional response of invertebrate predators to prey density. Memoirs of the Entomological Society of Canada, 48: 1–86.
Içsikber, A.A. 2005. Functional response of two coccinellid predators, Scymnus levaillanti and Cycloneda sanguinea, to the cotton aphid, Aphis gossypii. Turkish Journal of Agriculture and Forestry, 29: 347–355.
Jalali, M.A., Tirry, L., and De Clercq, P. 2010. Effect of temperature on the functional response of Adalia bipunctata to Myzus persicae. BioControl, 55: 261–269.
Joodaki R., Zandi-Sohani N., Zarghami S., and Yarhamadi, F. 2018. Temperature-dependent functional response of Aenasius bambawalei (Hymenoptera: Encyrtidae) to different population densities of the cotton mealybug Phenacoccus solenopsis (Hemiptera: Pseudococcidae). European Journal of Entomology, 115: 326–331.
Juliano, S.A. 2001. Nonlinear curve fitting: predation and functional response curve. In Scheiner, S.M. and Gurevitch, J. (Eds.). Design and Analysis of Ecological Experiments. Oxford University Press. pp. 178–216.
Koch, R.L., Hutchison, W.D., Venette, R.C., and Heimpel, G.E. 2003. Susceptibility of immature monarch butterfly, Danaus plexippus (Lepidoptera: Nymphalidae: Danainae), to predation by Harmonia axyridis (Coleoptera: Coccinellidae). Biological Control, 28: 265–270.
Kovar, I. 2007. Coccinellidae. In Löbl, I. & Smetana A. (Eds.). Catalogue of Palaearctic Coleoptera, Vol. 4. Stenstrup. Apollo Books. Brill. pp. 568–631.
Li, T., Yumel, Z., Cai, T., Changge, Z., and Xiaojun, L. 2005. Study on functional response of Nephus ryuguus (Kamiya) to Oracella acuta (Lobdell). Natural Enemies of Insects, 1: 27–31.
Luck, R.F. 1985. Principles of arthropod predation. In Huffaker, C.B. & Rabb, R.L. (Eds.). Ecological Entomology, Wiley. pp. 497–530.
Mahdian, K., Tirry, L. and De Clercq, P. 2007. Functional response of Picromerus bidens: effect of host plant. Journal of Apply Entomology, 131: 160–164.
Mahdian, K., Tirry, L., and De Clercq, P. 2010. Effect of temperature on thefunctional response of  Adalia bipunctata to Myzus persicae.  Biological Control, 55: 261–269.
Madadi, H., Mohajer Parizi, E., Allahyari, H., and Enkegaard, A. 2011. Assessment of the biological control capability of Hippodamia variegata (Col.: Coccinellidae) using functional response experiments. Journal of Pest Science, 84: 447–455.
Messelink, G.J., Vijverberg, R., Leman, A., and Janssen, A. 2016. Biological control of mealybugs with lacewing larvae is affected by the presence and type of supplemental prey.  Biological Control, 61: 555–565.
Milonas, P.G., Kontodimas, D.C.H., and Martinou, A.F. 2011. A predator̕s functional response: influence of prey species and size. Biological Control, 59: 141–146.
Mirhosseini, A.M., Hosseini, M.R., and Jalali, M.A. 2015. Effects of diet on development and reproductive fitness of two predatory coccinellids (Coleoptera: Coccinellidae). European Journal of Entomology, 112: 446–452.
 
Moayeri, H.R.S., Madadi, H., Pouraskari, H., and Enkegaard A. 2013. Temperature dependent functional response of Diaeretiella rapae (Hymenoptera: Aphidiidae) to the cabbage aphid, Brevicoryne brassicae (Hemiptera: Aphididae). European Journal of Entomology, 110: 109–113.
Moghadam, M. 2013. An annotated checklist of the scale insects of Iran (Hemiptera, Sternorrhyncha, Coccoidea) with new records and distribution data. ZooKeys, 334: 1–92.
Mossadegh, M.S., Vafaei, Sh., Zarghami, S., Kocheli, F., Farsi, F., Alizadeh, M.S., and Rezaie N. 2012. Natural enemies of Phenacoccus solenopsis Tinsely (Sternorrhycha: Coccoidea: Pseudococcidae) in Khuzestan, Iran. Proceeding of the 20th Iranian plant Protection Congress, Shiraz, Iran. P. 216.
Mossadegh, M.S., Vafaei, Sh., Farsi, A., Zarghami, S., Esfandiari, M., Dehkordi, F.S., Fazelinejad, A., and Seyfollahi, F. 2015. Phenacoccus solenopsis Tinsley (Sternorrhyncha: Pseudococcidae), its natural enemies and host plants in Iran. Proceeding of the 1st Iranian international Congress of Entomology, Tehran Iran. pp. 159–167.
Mukerji, M.K., and LeRoux, E.J. 1969. The effect of predator age on the functional response of Podisus maculiventris to the prey size of Galleria mellonella. Canadian Entomologist, 101: 314–327.  
Murdoch, W.W. 1969. Switching in general predators: experiments on predator specificity and stability of prey populations. Ecological Monographs, 39: 335–364.
Murdoch, W.W., and Oaten, A. 1975. Predation and population stability. Advances in Ecological Research, 9: 2–131.
Nakhai Madih, S., Ramezani, L., Zarghami S., and Zandi-Sohani N. 2016-2017. Functional response of different life stages of Hyperaspis polita feeding on cotton mealybug Phenacoccus solenopsis. Iran. Journal of Plant Protection Science, 47: 303–311.
Nikbin, R., Sahragard, A., and Hosseini, M. 2014. Age-specific functional response of Trichogramma brassicae (Hymenoptera: Trichogrammatidae) parasitizing different egg densities of Ephestia kuehniella (Lepidoptera: Pyralidae). Journal of Agricultural Science and Technology, 16: 1205–1216.
Omkar, O., and Pervez, A. 2004. Functional and numerical responses of Propylea dissecta (Col., Coccinellidae). Journal of Apply Entomology, 128: 140–146.
Omkar, O., and Bind, R. 2004. Prey quality dependent growth, development and reproduction of a biocontrol agent, Cheilomenessex maculata (Fabricius) (Coleoptera: Coccinellidae). Biocontrol Science and Technology, 14: 665–673.
Pervez, A., and Omkar, O. 2005. Functional responses of coccinellid predators: an illustration of a logistic approach. Journal of Insect Science, 5(5): 1–6.
Raimundo, A.C., Fursch, H., and van Harten, A. 2008. Order Coleoptera, family Coccinellidae. Arthropod fauna of the UAE, 1: 217–239.
Ramindo A.A.C., and Hartenvan W.A. 2000. An annotated checklist of the Coccinellidae (Insecta: Coleptera) of Yemen. Fauna of Arabia, 18: 211–243.
Real, L.A. 1977. The kinetics of functional response. American Naturalist, 111: 289–300.
Rogers, D. 1972. Random search and insect population models. Journal of Animal Ecology, 41: 369–383.
Rudolf, V.H. 2008. Consequences of size structure in the prey for predator-prey dynamics: the composite functional response. Journal of Animal Ecology, 77: 520–528.
Sahayara, K., Kumar, V., Avery, P.B. 2015. Functional response of Rhynocoris kumarii (Hemiptera: Pseudococcidae) to different population densities of Phenacoccus solenopsis (Hemiptera: Pseudococcidae) recorded in laboratory. European Journal of Entomology, 112: 69–74.
Sarmento, R.A., Pallini, A., Venzon, M., De Souza, O.F.F.A., Molina Rugama, J., and Oliveira, C.L.De. 2007. Functional response of the predator Eriopisconnexa (Coleoptera: Coccinellidae) to different prey types. Brazilian Archives of Biology and Technology, 50: 121–126.
SAS Institute. 2003. J. M. P: A Guide to Statistical and Data Analysis, version 9.1. Institute, Cary, NC.
Seagraves, M.P. 2009. Lady beetle oviposition behavior in response to the trophic environment.  Biological Control, 51: 313–322.
Solomon, M.E. 1949. The natural control of animal populations. Journal of Animal Ecology, 18: 1–35.
Trexler, J.C., McCulloch, C.E., and Travis, J. 1988. How can the functional response best be determined? Oecologia, 76: 206–214.
Veeravel, R., and Baskaran P. 1997. Searching behaviour of two coccinellid predators, Coccinella transversalis Fab. and Cheilomenes sexmaculatus Fab., on eggplant infested with Aphis gossypii Glov. Insect Science and Its Application, 17: 363–368.
Zarghami, S., Kocheili, F., Mossadegh, M.S., Allahyari, H., and Rasekh, A. 2014a. Effect of temperature on population growth and life table parameters of Nephus arcuatus (Coleoptera: Coccinellidae). European Journal of Entomology, 111: 199–206.
Zarghami, S., Kocheili, F., Mossadegh, M.S., Allahyari, H., and Rasekh, A. 2014b. Prey preference and consumption capacity of Nephusarcuatus (Coleoptera: Coccinellidae): the influence of prey stage, prey size and feeding experience. Biocontrol Science and Technology, 24: 1062–1072.
Zarghami, S., Mossadegh, M.S., Kocheili, F., Allahyari, H., and Rasekh, A. 2014c. Prey stage preference and functional response of the coccinellid, Nephus arcuatus Kapur in response to Nipaecoccus viridis (News.). Plant Pests Research, 4: 73–86.
Zarghami, S., Mossadegh, M.S., Kocheili, F., Allahyari, H., and Rasekh A. 2016. Functional responses of Nephus arcuatus Kapur (Coleoptera: Coccinellidae), the most important predator of spherical mealybug Nipaecoccus viridis (Newstead). Psyche, 1–9.
  © 2021 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).