اثر استرینTr6 Trichoderma harzianum در القای مقاومت علیه سفیدبالک گلخانه (Hem.: Aleyodidae) Trialeurodes vaporariorum، در گیاه گوجه‌فرنگی

نوع مقاله : علمی پژوهشی-فارسی

نویسندگان

1 دانشجوی دکترا، گروه گیاه‌پزشکی، دانشکده علوم و مهندسی کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج ، ایران

2 استاد، گروه گیاه‌پزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

3 دانشیار، گروه گیاه‌پزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

یکی از مکانیسم‌­های عمل قارچ‌­های جنس Trichoderma spp.، تحریک سامانه دفاعی در گیاهان است. در این مطالعه، اثر استرینTr6  Trichoderma harzianum بر ترجیح میزبانی و تخم‌­گذاری سفیدبالک گلخانهTrialeurodes vaporariorum westwood در شرایط آزمایشگاهی بررسی شد. در این راستا چهار آزمایش شامل سنجش فنول کل، بررسی اثر زمان در بروز مقاومت، انتخاب آزاد و بدون انتخاب در شرایط دمایی 2±25 درجه سلسیوس، رطوبت نسبی60-70 درصد و دوره نوری 8:16 ساعت (روشنایی:تاریکی) انجام شد. نتایج نشان داد بیش‌ترین غلظت فنول کل در گیاه مربوط به زمان‌­­های3 و 4 روز بعد از تلقیح قارچ بود که به­‌ترتیب برابر با 003/0±3503/0و 001/3323±0/0 میلی­‌گرم بر گرم بود و کم‌ترین تعداد افراد بالغ پشت برگ از روی گیاهانی که 2 و 4 روز از زمان تلقیح آن­ها می‌­گذشت، جمع‌­آوری شد که به‌ترتیب میانگین آن­‌ها برابر با 86/0±2/2 و63/0±0/2بود. هم‌چنین در گیاهان تیمارشده به­‌وسیله قارچ تریکودرما، کاهش معنی‌داری در میانگین تعداد حشرات بالغ درپشت برگ (66/0±4/3)، تخم‌های گذاشته شده (51/1±4/7) و میزان قطرات عسلک تولیدشده (28/0±0/1) نسبت به گیاهان شاهد، مشاهده شد. یافته­‌های این پژوهش نشان داد که تیمار گیاه با استرین Tr6 T. harzianum سبب القای مقاومت نسبت به گیاه‌خواری سفیدبالک، کاهش ترجیح میزبانی و تخم‌گذاری شد و کاربرد آن می­تواند یک گزینه امیدوارکننده در برنامه مدیریت تلفیقی این آفت در گلخانه باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Trichoderma harzianum Tr6 in inducing resistance in tomato against Trialeurodes vaporariorum (Hem.: Aleyodidae)

نویسندگان [English]

  • M. Aldaghi 1
  • H Allahyari 2
  • V. Hosseininaveh 2
  • K. Behboudi 3
1 Ph.D. student, Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
2 Professor, Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
3 Associate professor, Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

Background and Objectives
The greenhouse whiteflies, Trialeurodes vaporariorum (Westwood), are one of the major pests of vegetable and ornamental crops in greenhouses in the world. They damage crops through direct feeding, inserting their stylet into leaf veins, and extracting nourishment from the phloem sap. As a by-product of feeding, honeydew is excreted, which is an indirect but yet another substantial source of damage. The third most harmful characteristic is the ability of adults to transmit various plant viruses. Induced resistance is a non-chemical control method that has no negative impact on the environment and human health and can be a desirable approach in plant protection and pest control. Trichoderma spp. has spread in many ecosystems and its various species such as Trichoderma harzianum Rifai have been successful as non-pathogenic symbionts in controlling plant pathogens via different mechanisms. Some of these mechanisms include enzymatic degradation, secretion of antibiotics, and increasing root absorption capacity. Recent findings suggest that T. harzianum is also a potent inducer of Induced Systemic Resistance (ISR) and can stimulate the immune system in plants against plant diseases and pests. In this study, the efficacy of T. harzianum Tr6 was investigated on host preference and egg production of T. vaporariorum.
Material and Methods To evaluate the effect of T. harzianum Tr6, four tests were carried out: 1) Total phenol assay using Folin–Ciocalteu reagent, 2) The effect of time on induced resistance, 3) Free choice, and 4) Non choice. These tests were conducted on tomato plants (Falat cultivar) at 25±2°C, relative humidity of 60-70%, and a photoperiod of 8 h/16 h (day/night). Also, these experiments were performed on one-day-old adults in plots with four or six leaves in shelves equipped with organza mesh. ResultsAccording to the phenol assay, the highest amount of total plant phenol was observed three and four days after inoculation by Tr6 strain respectively 0.3503±0.001 and 0.3323±0.001mg/g. Therefore, for the next three tests, plants that were inoculated after three days were used as treated samples, and plants watered with distilled water were used as control ones. In these experiments, the lowest number of adults on the back of the leaves after 24 hours was observed two and four days upon inoculation respectively 2.2±  0.86 and 2.0±  0.63. On the other hand, plants inoculated by Tr6 displayed a significant decrease in adults on the back of the leaves (3.4± 0.66), egg-laying (7.4± 1.51), and honeydew droplets (1± 0.28) compared to control plants.Conclusion
The most important factor in controlling the whitefly population is reducing the reproduction rate. Induced resistance can repel insects from plants and limit their nutrition, and thus, reduce their reproduction. This study implied that the inoculation of tomato by T. harzianum Tr6 strain could induce resistance to whitefly and reduce host preference and egg production, as well as honeydew secretion. Therefore, this strain can be a promising option in preventing the outbreak of this multi-generational pest.

کلیدواژه‌ها [English]

  • Trichoderma
  • Antagonist
  • Host preference
  • Total phenol
Abdul, R. W.,  Barkat, H. and H. C. Sharma. 2015. Induced resistance in groundnut by jasmonic acid and salicylic acid through alteration of trichom density and oviposition by Helicoverpa armigera (Lepidoptera: Noctuidae). Aob Plants, 5: 1–9.
Ainsworth, E. A., and Gillespie, K. M. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature protocols, 2(4): 875–877.
Alizadeh, H., Behboudi, K., Nikkhah, M. J., Zamioudis, C., Pieterse, C. M. J., and Bakker, P. A. H. M. 2013. Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps1. Biological Control, 65: 14–23.
Bagheri, S., Kocheily, F., Mosadegh, M. S., and Shishehbor, P. 2012. Investigation on population changes of jasmine whitefly Aleuroclava jasmini (Takahashi) (Homo: Aleyrodidae) in citrus orchards of Dezful city. 20th Iranian Plant Protection Congress, Shiraz, p. 666.
Baldwin, I. T., and Schultz J. C. 1983. Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Science, 221: 277–279.
Barahona, R. 2010. The systemic activity of mutualistic endophytic fungi in Solanaceae and Cucurbitaceae plants on the behaviour of the phloem-feeding insects Trialeurodes vaporariorum, Aphis gossypii and Myzus persicae. Friont Cover, 120 pp.
Coppola, M., and Cascone, P. 2017. Trichoderma harzianum enhances tomato indirect defense against aphids. Plant‐Insect‐Microbiology Interactions, 24(6): 1025–1033.
Felton, G. W., Korth, K. L., Bi, J. L., Wesley, S. V., Huhman, D. V., Mathews, M. C., and Murphy, J. B. 1999. Inverse relationship between systemic resistance of plants to microorganisms and to insect herbivory. Current Biology, 9: 317–320.
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., and Lorito, M. 2004. Trichoderma speci-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2: 43–56.
Hermosa, R., Viterbo, A., Chet, I., and Monte, E. 2012. Plant-beneficial effects of Trichoderma and of its genes. Microbiology, 158: 17–25.
Hohmann, P., Jones, E. E., Hill, R. A., and Stewart, A. 2012. Ecological studies of the bio-inoculant Trichoderma hamatum LU592 in the root system of Pinus radiata. FEMS Microbiol Ecology, 80, 709–721.
Khalid, A. S., Mohamad Roof, M. N., Rebecca, H. H., and Idris, A. B. 2015. Aphid-induced defences in chilli affect preferences of the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Scientific Reports, 5(13): 1–9.
Kuc, J. 1985. ‘Increasing crop productivity and value by increasing disease resistance through non-genetic techniques’, In: Forest Potentials, Productivity and Value, Weyerhauser Science Symp. 4 (Eds. R. Ballard et al.) Weyerhauser Co. Press, p. 147–190.
Legrand, A., and Barbosa P. 2000. Pea aphid (Hom: Aphididae) fecundity, rate of increase and within plant distribution unaffected by plant morphology. Environmental Entomology, 29: 978–993.
Martinuz, A. 2012. Effectiveness of systemic resistance toward Aphis gossypii (Hom., Aphididae) as induced by combined applications of the endophytes Fusarium oxysporum Fo162 and Rhizobium etli G12. Biocontrol, 62(3): 206–212.
McLean, K. L., Hunt J. S., Stewart, A., Wite, D., Porter, I. J., and Villalta, O. 2012. Compatibility of a Trichoderma atroviride biocontrol agent with management practices of Allium crops. Crop Protection, 33: 94–100.
Menjivar, R. D., and Cabrera, J. A. 2012. Induction of metabolite organic compounds by mutualistic endophytic fungi to reduce the greenhouse whitefly Trialeurodes vaporariorum (Westwood) infection on tomato. Plant and Soil, 352(2): 233–241.
Nazeri, M., and Allahyari, H. 2017. Survey on the effect on pest injury on induced resistance. Ph D. Thesis. University of Tehran (In Farsi with English summary).
Perring, T. M., Stansly, P. A., Liu, T. X., Smith. H. A., and Andreason, S. A. 2018 Sustainable management of arthropod pests of tomato. In: Whiteflies: Biology, Ecology and Management, p. 73–110.
Rani, P. U., and Yasur, J. 2009. Physiological changes in groundnut plants induced by pathogenic infection of Cercosporidium personatun Deighton. Allelopathy Journal, 23(2): 369–378.
Rodriguez -Gonzalez, A., Pedro, A., Casquero, R., Cardoza, E., and Santiago, G. 2019. Effect of trichodiene synthase encoding gene expression in Trichoderma strains on their effectiveness in the control of Acanthoscelides obtectus. Journal of Stored Products Research, 83: 275–280.
Rostas, M., Simon, M., and Hilker, M. 2003. Ecological cross-effects of induced plant responses towards herbivores and phytopathogenic fungi. Basic Applied Ecology, 4: 43–62.
Shores, M. 2005. Involvement of Jasmonic Acid/Ethylene Signaling Pathway in the Systemic Resistance Induced in Cucumber by Trichoderma asperellum T203. Phytopathology, 95(1): 76–84.
Shores, M., and Harman, G. E. 2008. The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiology, 147: 2147–2163.
Walling, L. 2008. Avoiding Effective Defences: Strategies Employed by Phloem-Feeding Insects. Plant Physiology, 146: 859–866.
 
Van der Linden, A., and van der Staaij, M. 2001. Banker plants facilitate biological control of whiteflies in cucumber. Proceedings of the Section Experimental and Applied Entomology, Netherlands Entomological Society, p. 75–80.
Van Lenteren, J. C. 1992. The parasite-host relationship between Encarsia formosa Gahan (Hymenoptera, Aphelinidae) and Trialeurodes vaporariorum (Westwood) (Homoptera, Aleyrodidae). Applied Entomology, 114(5): 392–399.
Wu, J., and Baldwin, I. T. 2010. New insights into plant responses to the attack from insect herbivores. Annual Review of Genetics, 44: 1–24.
  © 2021 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).