مهار زیستی بیماری پوسیدگی سفید ساقه بادام زمینی با استفاده از قارچ‌های آنتاگونیست در استان گیلان

نوع مقاله : علمی پژوهشی-فارسی

نویسندگان

1 دانشیار، گروه گیاه‌پزشکی، دانشکده کشاورزی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

2 دانش‌آموخته کارشناسی ارشد بیماری‌شناسی گیاهی، گروه گیاه‌پزشکی، دانشکده کشاورزی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

چکیده

بیماری پوسیدگی سفید ساقه با عامل Sclerotium rolfsii یکی از مهم­ترین بیماری­‌های خاک‌­زاد بادام زمینی است که در سطح وسیعی از مزارع کشت بادام زمینی استان گیلان به­‌ویژه در زمان برداشت شایع می­‌شود. به­‌کارگیری میکروارگانیسم‌های مفید، روش جایگزین برای استفاده از قارچ­کش‌­های شیمیایی است. در این پژوهش اثر سه جدایه از Trichoderma spp.، سه جدایه از Penicillium spp.، دو جدایه از Aspergillus spp. و یک جدایه از Cladosporium cladosporioides روی بیمارگر S.rolfsii با استفاده از روش‌­های کشت متقابل، کشت روی اسلاید، متابولیت­‌های فرار و متابولیت­‌های غیرفرار در آزمایشگاه مورد بررسی قرار گرفت. در آزمایش‌­های گلخانه‌­ای، گیاهان بادام زمینی با این جدایه‌­های قارچی همراه با S. rolfsii مایه‌­زنی شدند و صفاتی مانند شدت بیماری، ارتفاع، وزن تر و وزن خشک گیاه مورد مطالعه قرار گرفت. نتایج نشان داد که در روش کشت متقابل، T. harzianum و T. virens به ترتیب با 58/93 درصد و 94/92 درصد بیشترین توانایی را در مهار رشد میسلیومی S. rolfsii داشتند. در روش کشت اسلاید، تمامی جدایه‌­ها به‌­جز T. virens و T. viride در مهار ریسه‌­های S. rolfsii موفق بودند. در آزمون متابولیت فرار، P. glabrum و A. flavus به‌­ترتیب با 25/81 درصد و 75 درصد و در آزمون متابولیت غیرفرار T. harzianum و T. viride به‌­ترتیب با 5/97 و 75/93 درصد بیشترین توانایی را در مهار رشد میسلیومی S. rolfsii نشان دادند. همچنین اثرات این قارچ‌ها روی میزان مهار بیمارگر S. rolfsii در مطالعات گلخانه­‌ای مورد بررسی قرارگرفت. نتایج نشان داد که P. glabrum با 4/39 درصد و T. viride با 8/38 درصد موثرترین قارچ‌­ها در کاهش وقوع و شدت بیماری بودند. همچنین به‌­کارگیری این قارچ‌های آنتاگونیست در شرایط گلخانه منجر به افزایش ارتفاع بوته، وزن تر و خشک اندام هوایی و ریشه در حضور قارچ عامل بیماری گردید. تجزیه واریانس و مقایسه میانگین صفات با استفاده از روش حداقل اختلاف معنی‌­دار (LSD)، اختلاف معنی­‌داری بین قارچ­‌های مورد مطالعه در روش‌­های آزمایشگاهی و گلخانه­‌ای را نشان داد. نتایج این تحقیق نشان­ دهنده این مطلب بود که قارچ‌­های T. viride، T. harzianum،P. glabrum، A. flavus و C. cladosporioides موجود در زیستگان طبیعی گیاه بادام زمینی خواص بالقوه‌­ای برای مهار زیستی بیماری پوسیدگی سفید ساقه بادام زمینی از خود نشان می­‌دهند.

کلیدواژه‌ها


عنوان مقاله [English]

Biological control of peanut white stem rot disease by antagonistic fungi in Guilan province

نویسندگان [English]

  • M. R. Safari Motlagh 1
  • M. Farokhzad 2
1 Associate Professor, Department of Plant Protection, Faculty of Agriculture, Rasht Branch, Islamic Azad University, Rasht, Iran Rasht, Iran
2 Graduated of Plant Pathology, Department of Plant Protection, Faculty of Agriculture, Rasht Branch, Islamic Azad University, Rasht, Iran
چکیده [English]

Background and Objectives
White stem rot caused by Sclerotium rolfsii is a soilborne disease which is extensively common across the groundnut farms of Guilan province, especially during the harvest period. Using the beneficial microbial agents is an alternative method for applying the chemical fungicides.
Materials and Methods
To find the appropriate fungal antagonistic isolates for the biological control of peanut white stem rot, the effect of three isolates of Trichoderma spp., three isolates of Penicillium spp., two isolates of Aspergillus spp. and one isolate of Cladosporium cladosporioides were studied on S. rolfsii in vitro using dual culture, slide culture, volatile metabolites and non-volatile metabolites. Peanut plants were inoculated with these fungal isolates as well as S. rolfsii in greenhouse experiments, and parameters including disease severity, height, fresh weight, and dry weight of the plant were measured.
Results
The results showed that in the dual culture method, T. harzianum and T. virens were most capable of suppressing the mycelial growth of S. rolfsii with a suppression capability of 93.58% and 92.94%, respectively. In the slide culture method, all isolates turned out to be effective in suppressing the mycelia growth of S. rolfsii, except for T. virens and T. viride. In the volatile metabolite assay, P. glabrum and A. flavus with 81.25% and 75%, respectively and in the non-volatile metabolite method, T. harzianum and T. viride with 93.75% and 97.5% respectively showed the greatest ability to inhibit S. rolfsii mycelial growth. Moreover, the effects of these fungi on the control of S. rolfsii pathogen were explored in greenhouse trials. The results revealed that P. glabrum was 39.4% effective and T. viride was 38.8% effective in reducing the extent and intensity of the disease. Under the presence of the pathogen, the treatment of these antagonistic fungi in greenhouse conditions enhanced plant height, shoot and root fresh and dry weight. In the in vitro and greenhouse approaches, an analysis of
 
variance and a comparison of means of the attributes using the least significant difference (LSD) indicated significant differences (P ≤0.01 and P≤ 0.05) among the examined fungi.
Discussion
The results of the in vitro and greenhouse trials showed that T. viride, T. harzianum, P. glabrum, A. flavus, and C. cladosporioides, which are present in the natural flora of groundnuts, have the potential capability of the biological control of S. rolfsii as the pathogen of groundnut stem white rot.
 

کلیدواژه‌ها [English]

  • Disease severity
  • Groundnut
  • Physiological factors
  • Sclerotium rolfsii
  • Volatile metabolites
Agrios, G. (2005). Plant Pathology. 5th ed, Academic Press.
Akram, A., Shaheen, I., Akhund, S., Nayyar, B. G., & Seerat, W. (2016). In vitro antifungal activity of Pongamia pinnata against collar rot pathogen (Sclerotium rolfsii) of chickpea. Pure and Applied Biology, 5(3), 520-528. http://dx.doi.org/10.19045/bspab.2016.50066
Amaike, S., & Keller, N. P. (2011). Aspergillus flavusAnnual Review of Phytopathology49, 107–133. https://doi.org/10.1146/annurev-phyto-072910-095221
Anonymous. (2015). Agricultural Statistics. Jihad-e-Agriculture Organization of Guilan province, Crop Year 2014-2015 (in Farsi).
Asghari, M., & Maei, S. D. (1991). Comparison of the effects of several control methods on stem and peanut pod rot disease. Proceedings of the 10th Iranian Plant Protection Congress, p. 215. Iran (in Farsi with English summary).
Basumatary, M., Dutta, B. K., Singha, D. M., & Das, N. (2015). Some in vitro observations on the biological control of Sclerotium rolfsii, a serious pathogen of various agricultural crop plants. Journal of Agriculture and Veterinary Science, 8(2), 87-94. https://doi.org 10.9790/2380-08228794
Bensch, K., Groenewald, J. Z., Dijksterhuis, J., Starink-Willemse, M., Andersen, B., Summerell, B.A., Shin, H. D., Dugan, F. M., Schroers, H. J., Braun, U., & Crous, P. W. (2010). Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales)Studies in Mycology, 67, 1-94. https://doi.org/10.3114/sim.2010.67.01
Bertrand, P. F., & Gottwald, T. R. (1997). Evaluation of fungicides for pecan disease control. In: K. D. Hickey, (ed.), Methods for Evaluating Pesticides for Control of Plant Pathogens. (pp. 179-181). Oxford and IHB Publisher.
Bindu Madhavi, G., & Bhattiprolu, S. L. (2011). Integrated disease management of dry root rot of chilli incited by Sclerotiuin rolfsii Sacc. International Journal of Plant, Animal and Environmental Sciences, 1(2), 31-37. https://www.researchgate.net/publication/259753683
Boland, G. J., & Hall, R. (1994). Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 16(2), 93-108. https://doi.org/10.1080/07060669409500766
Booth, C. 1971. Methods in microbiology. Academic Press, New York.
Bosah, O., Igalek, C. A., & Omorusi, V. I. (2010). In vitro microbial control of pathogenic Sclerotium rolfsii. International Journal of Agriculture & Biology, 12(3), 474-476. https://www.researchgate.net/publication/268063022
Burgess, D. R., & Hepworth, G. (1996). Biocontrol of Sclerotinia stem rot (Sclerotinia minor) in sunflower by seed treatment with Gliocladium virense. Plant Pathology, 45, 583-592. https://doi.org/10.1046/j.1365-3059.1996.d01-145.x
Cardoso, J. E., Santos, A. A., Rossetti, A. G., & Vidal, J. C. (2004). Relationship between incidence and severity of cashew gummosis in semiarid north-eastern Brazil. Plant Pathology, 53(3), 363-367. https://doi.org/10.1111/j.0032-0862.2004.01007.x
Darvin, G., & Kumari, V. P. (2013). Effect of bio-control agents on radial growth of Sclerotium rolfsii in vitro. International Journal of Applied Biology and Pharmaceutical Technology, 4(4), 61-64. https://www.fortunejournals.com/ijabpt/pdf/24009-G.%20Darvin.pdf
Dennis, C., & Webster, J. (1971) (a). Antagonistic properties of species-groups of Trichoderma: II. Production of volatile antibiotics. Transactions of the British Mycological Society, 57(1), 41-48. https://doi.org/10.1016/S0007-1536 (71) 80078-5
Dennis, C., & Webster, J. (1971) (b). Antagonistic properties of species-groups of Trichoderma: I. Production of non-volatile antibiotics. Transactions of the British Mycological Society, 57(1), 25-39. https://doi.org/10.1016/S0007-1536 (71) 80077-3
Dharmaputra, S. (1994). The possibility of controlling Sclerotium rolfsii on soybean using by Trichoderma and tebuconazole. Biotropia, 7, 18-29. https://doi.org/10.11598/btb.1994.0.7.113
Doley, K., Dudhane, M., & Borde, M. (2017). Biocontrol of Sclerotium rolfsii in groundnut by using microbial inoculants. Notulae Scientia Biologicae, 9(1), 124-130. https://doi.org/ 10.15835/nsb.9.1.19992
Ershad. J. (2009).  Iranian fungi. Agricultural Research and Extension Organization Publications (in Farsi).
Gams, W., & Bissett, J. (1998). Morphology and identification of Trichoderma. In: C. P. Kubicek, G. E. Harman, (Eds.), Trichoderma and Gliocladium. Taxonomy and Genetics (pp. 3-34.). Taylor and Francis Ltd.
Gancsan, S., Ganesh Kuppusamy, R., & Sekar, R. (2007). Integrated management of stem rot disease (Sclerotium rolfsii) of groundnut (Arachis hypogaea L.) using Rhizobium and Trichoderma harzianum (ITCC-4572). Turkish Journal of Agriculture and Forestry, 31(2), 103-108. https://www.researchgate.net/publication/288556555
Horsfall, J. G., & Barratt, R. W. (1945). An improved grading system for measuring plant Disease. Phytopathology, 35, 655.
Islam, M. M., Hossain, D. M., Nonaka, M., & Harada, N. (2016). Biological control of tomato collar rot induced by Sclerotiom rolfsii using by Trichoderma species isolated in Bangladesh. Archives of Phytopathology and Plant Protection, 50(3-4), 109-116. https://doi.org/10.1080/03235408.2016.1265243
Kakvan, N., Heydari, A., Zamanizadeh, H. R., Rezaee, S., & Naraghi, L. (2013). Development of new bioformulations using Trichoderma and Talaromyces fungal antagonists for biological control of sugarbeet damping-off disease. Crop Protection, 53, 80-88. https://doi.org/10.1016/j.cropro.2013.06.009
Le, C. N., Kruijt, M., & Raaijmakers, J. M. (2012). Involvement of phenazines and lipopeptides in interactions between Pseudomonas species and Sclerotium rolfsii, causal agent of stem rot disease on groundnut. Journal of Applied Microbiology, 112, 390-403.doi: org/10.1111/j.1365-2672.2011.05205.x.
McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40, 349-379. doi: org/ 10.1146/annurev.phyto.40.120501.101443.
Mehri, Z., Khodaparast, S. A., & Mosa Nejad, S. (2013). Genetic diversity in Sclerotium rolfsii population based on mycelial compatibility goroups in Guilan province, Iran. Iranian Journal of Plant Pathology, 49(3), 317-324 (in Farsi with English summary).
 
Mirhosseini Moghadam, S. A. (2009. The most important fungal diseases of peanut in Guilan province and their control method. Technical-Extension Journal of Guilan Jihad Agricultural Organization Publications. pp.1-8 (in Farsi with English summary).
Mirhosseini Moghadam, S. A., Izadyar, M., & Rouhani, H. (1998). Antagonistic effect of Trichoderma and Gliocladium species on Sclerotium rolfsii, the causal agent of peanut stem rot. Proceedings of the 13th Iranian Plant Protection Congress, pp. 404. Iran (in Farsi with English summary).
Naraghi, M. R., Heidari, A., Zamanizadeh, H., & Rezaei, S. (2016). Evaluation of biological control of Sclerotium cepivorum using Trichoderma and Talaromyces isolates in laboratory, greenhouse and field. Proceedings of the 22th Iranian Plant Protection Congress, p. 404. Iran (in Farsi with English summary).
Nawar, L. S. (2013). In vitro efficacy of some fungicides, bioagents and culture filtrates of selected saprophytic fungi against Sclerotium rolfsii. Life Science Journal, 10(4), 2222-2228. https://b2n.ir/k32037
Okhovat, S. M. (2006). Diseases of industrial grains. University of Tehran Press (In Farsi).
Parmar, H. J., Hassan, M. M., Bodar, N. P., Umrania, V. V., Patel. S. V., & Lakhani, H. N. (2015). In vitro antagonism between phytopathogenic fungi Sclerotium rolfsii and Trichoderma strains. International Journal Applied Science, 3(1), 16-19. doi: org/10.3126/ijasbt.v3i1.11845
Pitt, J. I., & Hocking, A. D. (2009). Fungi and Food Spoilage. Springer.
Prasad, G., & Dwivedi, S. K. (2017). Efficacy of some bioagensts Sclerotium rolfsii sacc. Causing root rot Zea mays L. crop. European Journal of Biomedical and Pharmaceutical Sciences, 4(7), 478-481. https://www.researchgate.net/publication/326519004
Punja, Z. K. (1985). The biology, ecology and control of Sclerotium rolfsii. Annual Reviews of Phytopathology, 23, 97-127. doi: org/10.1146/annurev.py.23.090185.000525
Punja, Z. K., & Grogan, R. G. (1983). Basidiocarp induction, nuclear condition variability and heterokaryon incompatibility in Athelia (Sclerotium) rolfsii. Phytopathology, 73, 1273-1278. doi: org/10.1094/phyto-73-1273
Radwan, M. B., Fadel, A. M., & Mohammad, I. A. M. (2006). Biological control of Sclerotium rolfsii by using indigenous Trichoderma spp. isolates from Palestine. Hebron University Research Journal, 2(2), 27- 47.https://www.hebron.edu/images/stories/hu-centers/pdf/Biological%20control%20of%20Sclerotium.pdf
Rekha, D., Patil, M. B., Shridhar Shetty, P., Swamy, K. M., & Gamanagatti, R. B. (2012). In vitro screening of native Trichoderma isolates against Sclerotium rolfsii causing collar rot of groundnut. International Journal of Science and Nature, 3(1), 117-120. https://b2n.ir/f13416
Riker, A. J., & Riker, R. S. (1936). Introduction to research on plant diseases: A guide to the principles and practice for studying various plant-disease problems. (John S. Swift Co.: St Louis).
 
Sabet, K. K., Saber, M. M., El–Naggar, M. M., El-Mougy, N. S., El-Deeb, H. M., El-Saied, G., & El-Shahawy, I. (2013). Using commercial compost as control measures against cucumber root-rot disease. Journal of Mycology, http://dx.doi.org/10.1155/2013/324570.
Safarzadeh Vishgahi, M. N., & Hosseinzadeh, G. (2009).  The effect of method and amount of iron consumption on growth and yield of peanuts in Gilan. Proceedings of the 1th National Conference on Oilseeds, pp. 1-5. Iran (in Farsi with English summary).
Samavat, S., Heydari, A., Zamanizadeh, H. R., Rezaee, S., & Alizadehaliabadi, A. (2014). Comparison between Pseudomonas aureofaciens (chlororaphis) and P. fluorescens in biological control of cotton seedling damping-off disease. Journal of Plant Protection Research, 54(2), 115-121. doi: org/10.2478/jppr-2014-0019
Sennoi, R., Jogloy, S., Saksirriat, W., Kesmala, T., Singkham, N., & Patanothai, A. (2012). Levels of Sclerotium rolfsii inoculums influence identification of resistant genotypes in Jerusalem artichoke. African Journal of Microbiology Research, 6(38), 6755-6760. doi: org/10.5897/AJMR12.1449
Sivakumar, D., Wilson Wijeratnam, R. S., Wijesundera, R. L. C., Marikar, F. M. T., & Abeyesekere, M. (2000). Antagonistic effect of Trichoderma harzianum on postharvest pathogens of rambutan (Nephelium lappaceum). Phytoparasitica, 28(3), 240-247. doi org/:10.1007/BF02981802
Tang, Z., Rao, L., Peng, G., Zhou, M., Shi, G., & Liang, Y. (2011). Effects of endophytic fungus and its elicitors on cell status and alkaloid synthesis in cell suspension cultures of Catharanthus roseus. Journal of Medicinal Plants Research, 5(11), 2192-2200. https://doi.org/10.5897/JMPR.9000520
Upadhyay, J. P., & Mukhyopadhayay, A. N. (1986). Biological control of Sclerotium rolfsii by Trichoderma harzianum in sugar beet. Indian Phytopathology, 39, 394-396. https://doi.org/10.1080/09670878609371066
Valed Saravi, Z., Sadravi, M., & Bahrami, M. (2011). The effect of three biological products on rice leaf pod blight in the field. Journal of Plant Protection, 25(1), 44-49 (in Farsi with English summary). https://doi.org/10.22067/jpp.v25i1.9590
Vikram, A., & Hamzehzarghani, H. (2011). Integrated management of Sclerotium rollfsii in groundnut (Arachis hypogaea L.) under pot culture conditions. Pest Technology, 5(1), 33-38.
Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., and Lorito, M. (2008). Trichoderma-plant pathogen interactions. Soil Biology & Biochemistry, 40, 1-10. https://doi.org/10.1016/j.soilbio.2007.07.002
White, T. J., Bruns, T., Lee, S., & Taylor, J. V. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: M.A Innis, D.H. Gelfand, J.J. Sninsky, T.J. White (Eds.), PCR Protocols: A guide to methods and applications, (pp. 315–322). Academic Press.
Wink, M. (2010). Functions and Biotechnology of Plant Secondary Metabolites. Annual Plant Reviews Volume 39: Second edition, Blackwell Publishing Ltd.
Yaqub, F., & Shahzad, S. (2005). Pathogenicity of Sclerotium rolfsii on different crops and effect of inoculums density on colonization of mungbea and sunflower roots. Pakistan Journal of Botany, 37(1), 175-180. https://www.researchgate.net/publication/266468138
Zhong, S., & Steffenson, B. J. (2001). Virulence and molecular diversity in Cochliobolus sativus. Phytopathology, 91(5), 469–476.https://doi.org/ 10.1094/PDIS-11-18-2103