Evaluation of Two Nontransformative Approaches in Triggering RNAi against Tomato Yellow Leaf Curl Virus

Document Type : Research paper-English

Author

Assistant Professor, Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Abstract

Tomato yellow leaf curl virus-Israel (TYLCV-IL) is a worldwide destructive monopartite begomovirus. Two nontransformative methods, namely the dsRNA (double-stranded RNA) vaccination and the hairpin construct expressing dsRNA were applied to induce RNA interference (RNAi) against TYLCV-IL infection. Analysis of TYLCV-IL-derived small interfering RNAs profile revealed two hot spots triggering post-transcriptional gene silencing, including a part of the coat protein (CP) and the replication-associated protein (Rep) genes. CP and Rep derived dsRNAs were produced in vitro and applied simultaneously or three days before agroinoculation of TYLCV-IL by rubbing on the leaf surface of Nicotiana benthamiana. All tested plants showed symptoms of typical infection at 21 days' post-inoculation (dpi), and viral genomic fragments were amplified in symptomatic plants by PCR as expected. Despite the systemic movement of applied dsRNAs in N. benthamiana plants, quantitative PCR showed no statistically significant difference between TYLCV-IL genome accumulation in virus infection alone or at the presence of dsRNA molecules. In contrast, the hairpin RNA construct (hpRep) triggered a high resistance against TYLCV-IL infection in tomato plants by targeting the same Rep sequence. HpRep construct suppressed expression of symptoms up to 21 dpi. Moreover, no virus genome was detected in symptomless plants indicating disruption of TYLCV-IL replication. These results indicate the distinct efficiency of two methods of RNAi induction against an important begomovirus species, TYLCV-IL. The role of different factors on the RNAi efficiency against TYLCV-IL has been discussed.

Keywords


Abhary, M. K., Anfoka, G. H., Nakhla, M. K., & Maxwell, D. P. (2006). Post-transcriptional gene silencing in controlling viruses of the tomato yellow leaf curl virus complex. Archives of Virology, 151, 2349-2363. doi: 10.1007/s00705-006-0819-7.
Ammara, U., Mansoor, S., Saeed, M., Amin, I., Briddon, R. W., & Al-Sadi, A. M. (2015). RNA interference-based transgenic tomato plants resistant to a begomovirus-betasatellite complex widespread in Oman. Journal of Virology, 12, 38-50. doi: 10.1186/s12985-015-0263-y.
Bai, M., Yang, G. S., Chen, W. T., Lin, R. M., Ling, J., Mao, Z. C., & Xie, B. Y. (2016). Characterization and function of Tomato yellow leaf curl virus-derived small RNAs generated in tolerant and susceptible tomato varieties. Journal of Integrative Agriculture 15, 1785-1797.
doi: 10.1016/S2095-3119(15)61315-6
Bisaro, D. M. (2006). Silencing suppression by geminivirus proteins. Virology, 344, 158-168. doi: 10.1016/j.virol.2005.09.041.
Blevins, T., Rajeswaran, R., Shivaprasad, P. V., Benknazariants, D., Si-Ammour, A., Park, H. S., Vazquez, F., Robertson, D., Meins, F., Hohn, T., & Pooggin, M. M. (2006). Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Research, 34, 6233-6246. doi: 10.1093/nar/gkl886. 
Boulton, M. I. (2008). Construction of infectious clones for DNA viruses: mastreviruses. Methods in Molecular Biology, 451, 503-523. doi: 10.1007/978-1-59745-102-4_34.
Brown, J. K., Fauquet, C. M., Briddon, R. W., Zerbini, M., Moriones, E., & Navas-Castillo, J. (2012). Geminiviridae. In: Virus taxonomy, ninth report of the international committee on taxonomy of viruses. Elsevier/Academic Press.
Brunetti, A., Tavazza, R., Noris, E., Lucioli, A., Accotto, G. P., & Tavazza, M. (2001). Transgenically expressed T-Rep of tomato yellow leaf curl Sardinia virus acts as a trans-dominant-negative mutant, inhibiting viral transcription and replication. Journal of Virology 75, 10573-10581. doi: 10.1128/JVI.75.22.10573-10581.2001.
Czosnek, H. (2008). Tomato Yellow Leaf Curl Virus. In: Encyclopedia of Virology. Elsevier.
Das, P. R., & Sherif, S. M. (2020). Application of Exogenous dsRNAs-induced RNAi in Agriculture: Challenges and Triumphs. Frontiers in Plant Science, 11, 946. doi: 10.3389/fpls.2020.00946.
Dubrovina, A. S., & Kiselev, K.V. (2019). Exogenous RNAs for gene regulation and plant resistance. International Journal of Molecular Sciences, 20, 21. doi: 10.3390/ijms20092282.
Fuentes, A., Carlos, N., Ruiz, Y., Callard, D., Sánchez, Y., Ochagavía, M. E., Seguin, J., Malpica-López, N., Hohn, T., Lecca, M. R., Pérez, R., Doreste, V., Rehrauer, H., Farinelli, L., Pujol, M., & Pooggin, M. M. (2016). Field trial and molecular characterization of RNAi-transgenic tomato plants that exhibit resistance to Tomato yellow leaf curl Geminivirus. Molecular Plant Microbe Interactions, 29, 197-209. doi: 10.1094/MPMI-08-15-0181-R.
Gan, D. F., Zhang, J. A., Jiang, H. B., Jiang, T., Zhu, S. W., & Cheng, B. J. (2010). Bacterially expressed dsRNA protects maize against SCMV infection. Plant Cell Reports, 29, 1261-1268. doi: 10.1007/s00299-010-0911-z.
Gou, D., Weng, T., et al (2007). A novel approach for the construction of multiple shRNA expression vectors. The Journal of Gene Medicine, 9,751-763. doi: 10.1002/jgm.1080.
Hamilton, A. J., & Baulcombe, D. C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 286, 950-952. doi: 10.1126/science.286.5441.950.
Hanley-Bowdoin, L., Bejarno, E. R., Robertson, D., & Mansoor, S. (2013). Geminiviruses: masters at redirecting and reprogramming plant processes. Nature Reveiws Microbiology, 11, 777-788. doi: 10.1038/nrmicro3117.
Jeske, H., Lütgemeier, M., & Preiss, W. (2001). DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic virus. EMBO Journal, 20, 6158-6167. doi: 10.1093/emboj/20.21.6158.
Johansen, L. K., & Carrington, J. C. (2001). Silencing on the Spot. Induction and Suppression of RNA Silencing in the Agrobacterium-Mediated Transient Expression System. Plant Physiology, 126, 930-938. doi: 10.1104/pp.126.3.930.
Khatoon, S., Kumar, A., Sarin, N., & Kahn, J. A. (2016). RNAi-mediated resistance against Cotton leaf curl disease in elite Indian cotton (Gossypium hirsutum) cultivar Narasimha. Virus Genes, 52, 530-537. doi: 10.1007/s11262-016-1328-8.
Mason, G., Caciagli, P., Accotto, G. P., & Noris, E. (2008). Real-time PCR for the quantitation of Tomato yellow leaf curl Sardinia virus in tomato plants and in Bemisia tabaci. Journal of Virological Methods, 147, 282-289. doi: 10.1016/j.jviromet.2007.09.015. 
Melita, O., Kaldis, A., Berbati, M., Reppa, C., Holeva, M., Lapidot, M., Gelbart, D., Otten, P., & Voloudakis, A. (2021). Topical application of double-stranded RNA molecules deriving from Tomato yellow leaf curl virus reduces cognate virus infection in tomato. Biologia Plantarum, 65, 100-110. doi: 10.32615/bp.2020.172.
Namgial, T., Kaldis, A., Chakraborty, S., & Voloudakis, A. (2019). Topical application of doubleā€stranded RNA molecules containing sequences of Tomato leaf curl virus and Cucumber mosaic virus confers protection against the cognate viruses. Physiological and Molecular Plant Pathology, 108, 101432. doi: 10.1016/j.pmpp.2019.101432.
Pakniat-Jahromy, A., Behjatnia, S. A. A., Dry, I. B., Izadpanah, K., & Rezaian, M. A. (2010). A new strategy for generating geminivirus resistant plants using a DNA betasatellite/splite barnase construct. Journal of Virological Methods, 170, 57-66. doi: 10.1016/j.jviromet.2010.08.019.
Pereira-Carvalho, R. C., Díaz-Pendón, J. A., Fonseca, M. E. N., Boiteux, L. S., Fernández-Muñoz, R., Moriones, E., & Resende, R.O. (2015). Recessive resistance derived from tomato cv. Tyking-limits drastically the spread of Tomato yellow leaf curl virus. Viruses, 7, 2518-2533. doi: 10.3390/v7052518.
Petrov, N., Stoyanova, M., Andonova, R., & Teneva, A. (2015). Induction of resistance to potato virus Y strain NTN in potato plants through RNAi. Biotechnology, Biotechnological Equipments, 29, 21-26. doi: 10.1080/13102818.2014.984968 .
Rojas, M. R., Macedo, M. A., et al. (2018). World management of geminiviruses. Annual Review of  Phytopathology, 25, 637-677. doi: 10.1146/annurev-phyto-080615-100327.
Shepherd, D. N., Martin, D. P., & Thomson, J. (2009). Transgenic strategies for developing crops resistant to geminiviruses. Plant Science, 176, 1-11. doi: 10.1016/j.plantsci.2008.08.011.
Swevers, L., Liu, J., & Smagghe, G. (2018). Defense Mechanisms against Viral Infection in Drosophila: RNAi and Non-RNAi. Viruses10, doi: 10.3390/v10050230.
 
Tabein, S., Behjatnia, S. A. A., Laviano, L., Pecchioni, N., Accotto, G. P. , Noris, E., & Miozzi, L. (2017). Pyramiding Ty-1/Ty-3 and Ty-2 in tomato hybrids dramatically inhibits symptom expression and accumulation of tomato yellow leaf curl disease inducing viruses. Archives of Phytopathology and Plant Protection, 5, 213-227. doi: 10.1080/03235408.2017.1287234.
Tabein, S., Jansen, M., Noris, E., Vaira, A. M., Marian, D., Behjatnia, S. A. A., Accotto, G. P., & Miozzi, L. (2020). The Induction of an Effective dsRNA-Mediated Resistance Against Tomato Spotted Wilt Virus by Exogenous Application of Double-Stranded RNA Largely Depends on the Selection of the Viral RNA Target Region. Frontiers in Plant Science, 11, doi: 10.3389/fpls.2020.533338.
Tenllado, F., & Díaz-Ruíz, J. R. (2001). Double-stranded RNA-mediated interference with plant virus infection. Journal of Virology, 75, 12288-12297. doi: 10.1128/JVI.75.24.12288-12297.2001.
Tenllado, F., Martínez-García, B., Vargas, M., & Díaz-Ruíz, J. R. (2003). Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections. BMC Biotechnology, 3, 3. doi: 10.1186/1472-6750-3-3.
Tenllado, F., Llave, C., & Diaz-Ruiz, J. R. (2004). RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Research, 102, 85-96. doi: 10.1016/j.virusres.2004.01.019.
Voloudakis, A. E., Holeva, M. C., et al. (2015). Efficient double-stranded RNA production methods for utilization in plant virus control. In: Plant Virology Protocols: New Approaches to Detect Viruses and Host Responses. Totowa, Humana Press.
Wang, M., Thomas, N., & Jin, H. (2017). Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection. Current Opinion in Plant Biology38:133-141. doi: 10.1016/j.pbi.2017.05.003.
Waterhouse, P. M., Graham, M. W., & Wang, M. B. (1998). Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proceedings of the National Academy of Sciences of the USA, 95, 13959-13964. doi: 10.1073/pnas.95.23.13959.
Zerbini, F. M., Briddon, R. W., Idris, A., Martin, D. P., Moriones, E., Navas-Castillo, J., Rivera-Bustamante, R., Roumagnac, P., & Varsani, A. (2017). ICTV Virus Taxonomy Profile: Geminiviridae, Journal of General Virology, 98, 131-133. doi: 10.1099/jgv.0.000738.
 © 2022 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).