بررسی اثر متالدئید لوماکیدین® علیه حلزون‌ها و راب­‌ها در گلخانه‌ گل زینتی اسپاتیفیلوم و مزرعه کاهو و مقایسه با کارایی فریکول® و سبزآرنگ® در گلخانه گل زینتی

نوع مقاله : علمی پژوهشی-فارسی

نویسندگان

1 استادیار پژوهش بخش تحقیقات جانورشناسی کشاورزی، موسسه تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

2 استادیار پژوهش بخش تحقیقات گیاه‌پزشکی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان مازندران، سازمان تحقیقات، آموزش و ترویج کشاورزی، ساری، ایران

3 استادیار پژوهش بخش تحقیقات گیاه‌پزشکی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گیلان، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران

4 دانشیار پژوهش بخش تحقیقات آفت‌کش‌ها، موسسه تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

حلزون‌­ها و راب­‌ها از آفات مهم گلخانه­ و مزارع کاهو بوده که با تغذیه از برگ، ساقه، ریشه و بذور گیاه باعث از بین رفتن آن­ می­گردند. کارایی متالدئید لوماکیدین 5 جی® با مقادیر 7/0 (توصیه شرکت سازنده) و 2 (توصیه شده مزرعه‌ای) گرم در مترمربع، طعمه فریکول® (5 گرم در مترمربع) و رنگ دورکننده سبزآرنگ® در مقایسه با شاهد روی گیاه زینتی اسپاتیفیلوم در سال‌های 1396 و 1397 در شرایط گلخانه‌ای مورد مطالعه قرار گرفت. همچنین عملکرد متالدئید لوماکیدین® در دُزهای 7/0 و 2 گرم در مترمربع در مزرعه کاهو بررسی شد. تعداد نرم‌تن زنده، یک روز قبل و 2، 4، 8، 14 و 21 روز پس از تیمارها شمارش شد. طبق نتایج دو ساله گلخانه، در روز بیست و یکم، متالدئید لوماکیدین® 2 و 7/0 گرم در مترمربع، فریکول® و سبزآرنگ® به طور میانگین به ترتیب 95، 5/91، 7/78 و 2/76 درصد کنترل علیه راب Deroceras agreste نشان دادند. بر این اساس، متالدئید لوماکیدین® 2 گرم در مترمربع به طور معنی‌داری از سه تیمار دیگر موثرتر عمل کرد. مقایسه دو دُز متالدئید لوماکیدین® در تجزیه آماری سالیانه، در روز بیست و یکم، درصد کارایی دُز کمتر را بدون تفاوت آماری معنی‌دار با دُز دیگر نشان داد. در مزرعه، در سال اول و دوم آزمایش به ترتیب تا 8 و 4 روز، عملکرد بیشتر دُز بالاتر و در روزهای آتی عملکرد مشابه هر دو دُز مشهود بود. این نشان می‌دهد که مصرف متالدئید لوماکیدین® 7/0 گرم در متر مربع می‌تواند ضمن کارایی مطلوب، صرفه اقتصادی نیز داشته باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effectiveness of metaldehyde Lumakidin® against snails and slugs in the greenhouse of Spathiphyllum and lettuce field and its comparison with the efficiency of Ferricol® and Sabzarang® in ornamental flower greenhouse

نویسندگان [English]

  • E. Ahmadi 1
  • M. GholamzadehChitgar 2
  • M. Hagh Ghadam 3
  • A. Heidari 4
1 Assistant Professor, Agricultural Zoology Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.
2 Assistant Professor, Plant Protection Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Sari, Iran
3 Assistant Professor, Plant Protection Research Department, Gilan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Rasht, Iran
4 Associate Professor, Pesticides Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
چکیده [English]

Background and Objectives
Snails and slugs as terrestrial molluscs are the important pests of greenhouses and lettuce fields, which cause destruction by feeding on the leaves, stems, roots, and seeds of plants. Using molluscicides is the most important control method against their damages. Metaldehyde is considered as one the most important chemical compounds which is widely used to control slugs and snails. Lumakidin 5G® (Basir Shimi Company), as a product containing metaldehyde, has been at field recommended dose, 2g/m2, while its 0.7g/m2 has the potential to control slugs and snails according to the manufacturer. Ferricol® is bait including 1% iron phosphate, and Sabzarang® is snail repellent paint containing insoluble copper salts, special sticking, and binding agents. So far, no research has been conducted on the effectiveness of Lumakidin 5G®, Ferricol® and Sabzarang® in the ornamental flower greenhouse against snail/slug. Therefore, this study aims to evaluate the efficiency of Lumakidin 5G®, Ferricol®, and Sabzarang® in the ornamental greenhouse of Spathiphyllum wallisii in Guilan province, along with the effect of Lumakidin 5G® at 0.7 and 2 g/m2 in lettuce in Lactuca sativa field in Mazandaran province.
Materials and Method
Treatments included 1, 2: Lumakidin 5G® at two doses of 0.7 and 2 g/m2, 3: Ferricol® (5g/m2), 4: Sabzarang®, and 5: control (untreated) against slug/snail in the ornamental greenhouse of S. wallisii during 2018 and 2019. In greenhouse, Lumakidin 5G® and Ferricol® were applied between the pots, and Lumakidin 5G® in lettuce field was used between the rows. The pots were painted with Sabzarang®, as a 10 cm wide band, to prevent the snails from climbing the plants. In addition, the effectiveness of Lumakidin 5G® at 0.7 and 2g/m2 was evaluated in the lettuce, L. sativa field. The number of live slugs/snails was counted one day before and 2, 4, 8, 14, and 21 days after the treatments. During the 21st day after the treatment, the percentage of leaves damaged by snails/slugs in the greenhouse and the percentage of damaged plants in the lettuce field in Lumakidin 5G® treatment were calculated.
Results
Based on the two-year results of the greenhouse, Lumakidin 5G®, doses of 2 and 0.7 g/m2, Ferricol® and Sabzarang® caused 80.9, 69.9, 68.1, and 65.7% mean efficiency against slug, Deroceras agreste, respectively. Mean comparison indicated that Lumakidin 5G® (0.7 g/m2), Ferricol® and Sabzarang® failed to have a statistically significant difference, while Lumakidin 5G® (2g/m2) was significantly more effective than the other three treatments. Under these conditions, the mean comparison of two doses of metaldehyde in the annual statistical analysis on the twenty-first day showed no statistically significant difference. In the lettuce field, the application of doses of 0.7 and 2g/m2 Lumakidin 5G® against slug, D. agreste in two years of experiment had a similar trend. Thus, more efficiency of higher doses was observed in the first and second year of the experiment up to 8 and 4 days, respectively, while similar efficiency of both doses was evident in the following days, which low-dose of Lumakidin 5G® (0.7 g/m2) can be as effective as the recommended dose (2g/m2) against the slug. The percentage of leaves damaged by snails/slugs in the greenhouse and the percentage of damaged plants in lettuce field in Lumakidin 5G® treatment showed the effective role of both doses in reducing the damage. The use of this compound in both greenhouse and field conditions reduced plant damage about 3 to 4 times compared to the control.
Discussion
Due to the effectiveness of Lumakidin 5G® (at 0.7 g/m2), it is recommended to be used in the greenhouse and field to reduce snails/slugs damage. The application of this product decreases the cost of control by reducing the amount of consumption per m2/hectare. Further, it can have less environmental pollution than other doses. In organic agriculture, the use of Ferricol® is recommended due to the environmental safety of the compound. However, it is more expensive than metaldehyde. Thus, it can be considered as a good choice for a greenhouse due to its smaller scale than the field. Sabzarang®, as a repellent color, can be another alternative to chemicals, but the compound does not kill snails/slugs and only keep them away from that area. Finally, the paint is more expensive than the other two compounds.

کلیدواژه‌ها [English]

  • Mollusc
  • Metaldehyde
  • Bait
  • Repellent paint
  • Spathiphyllum
Ahmadi, E. (2009). Evaluation of iron phosphate bait efficiency in controlling Deroceras agreste on lettuce in Mazandaran and Tehran provinces. Plant Protection, 1(4), 419-428. (In Farsi with English abstract).
Ahmadi, E. & Hasani Moghaddam, M. (2005). Study of control methods and economic injury level of slugs pest on lettuce in Mazandaran provice. Journal of Agriculture and Rural Development, 7(1), 1-7. (In Farsi with English abstract).
Ahmadi, K., Ebadzadeh, H., Hatami, F., Abdshah, H., & Kazemian, A. (2019). Agricultural Statistics. Ministry of Agriculture Jihad Publication. (In Farsi).
Amiri-Besheli, B. (2009). Toxicity appraisement of methaldehyde, ferricol®, snail repellent tape® and sabzarang® (snail repellent paint) on land snails (Xeropicta derbentina), (Xeropicta krynickii). African Journal of Biotechnology, 8(20), 5337-5342.
Anonymous. (2001). Statistics of permits issued for entry and discharge of raw materials required for pesticide formulation. Plant Protection Organization.
Bari, M.A. (2004). Comparative efficacy of mollusk baits containing metaldehyde (Slugfest and Deadline) and Iron phosphate (Sluggo) against the gray garden slug, Deroceras reticulatum occurring on artichokes. Acta Horticulturae, 660, 39-45.
Barker, G. M. (2002). Molluscs as crop pests. CABI Publishing, Wallingford.
Castle, G. D., Mills, G. A., Gravell, A., Jones, L., Townsend, I., Camerone, D. G., & Fones, G. R. (2017). Review of the molluscicide metaldehyde in the environment. Environmental Science Water Research and Technology, 3, 415–428.
Dreves, A.J., Sullivan, C., & Anderson, N.P. (2015). Slug Control. Pacific North West Insect Management Handbook. http://insect.pnwhandbooks.org/ipm/slug-control.
Ebadzadeh, H., Ahmadi, K., Mohammadnia Afrozi, SH., F., Taleghani, R., Abbasi, M., & Yari, SH. (2019). Agricultural Statistics. Ministry of Agriculture Jihad Publication.
Henderson, C.F., and Telton, E.W. (1955). Test with acaricides against the brown wheat mite. Journal of Economic Entomology, 48, 157-161.  
Horgan, A. R. (2006). The potential for slug control with ferric phosphate. In: Atkinson, C. et al. (Eds.). Aspects of Applied Biology: What will organic farming deliver? Association of Applied Biologists. (pp. 225-226).
Iglesias, J., Castillejo, J., & Castro, R. (2003). The effects of repeated applications of themolluscicide metaldehyde and the biocontrol nematode Phasmarhabditis hermaphrodita on molluscs, earthworms, nematodes, acarids and collembolans: A two-year study in north-west Spain. Pest Management Science, 59, 1217–1224.
Kheirodin, A. Damavandian, M.R., & Sarailoo, M.H. (2012). Mineral oil as a repellent incomparison with other control methods for citrus brown snail, Caucasotachea lencoranea. African Journal of Agricultural Research, 7(42), 5701-5707.
Lange, W., & Sciarone, H. (1952). Metaldehyde dusts for control of slugs affecting brussel sprouts in central California. Entomología, 45(5), 896-897.
Mansorian, A. (2005). Terrestrial molluscs of Golestan and Mazandaran provinces, northern Iran. Journal of the Faculty of Veteriny Medicine University of Tehran, 60(1), 31-36 (In Farsi with English abstract).
Mirzaei, A. (1972). Molluscs of agricultural importance in Iran. Ministry of AgricultureResources Plant Pests and Diseases Research Institute. (In Farsi).
Montero, F. J. (1997). Las babosas el enemigo silencioso de las hortalizas. Fondo Nacional de Investigaciones Agropecuarias, Maracay (Venezuela). EN: FONAIAP Divulga (Venezuela). 14(55), 37-38.
Nabeerasool, M., Campen, A., Polya, D., Brown, N., & van Dongen, B. (2015). Removal of metaldehyde from water using a novel coupled adsorption and electrochemical destruction technique. Water, 7, 3057–3071.
NFU. (2013). Updated briefing on Metaldehyde stewardship. NFU briefing, PS088/13. pp. 1–4.
Nicholls, C. J. (2014). Implications of not controlling slugs in oilseed rape and wheat in theUK. Agriculture and Horticulture Development Board. Research Review, 79, 1- 9.
Norouzi, M. (1999). List of permitted toxins in the country. Plant Protection Organization Publications. (In Farsi).
Nourbakhsh, S. (2020). List of important pests, diseases and weeds of major agriculturalcrops, pesticides and recommended methods to control them. Agricultural Research, Education and Extension Organization. (In Farsi)
Ryder, T.A., & Bowen, I.D. (1977). The slug foot as a site of uptake of copper molluscicidae. Journal of Invertebrate Pathology, 30, 381-386.  
Santacruz, A., Toro, P., & Salazar, G. (2011). Slugs control methods (Deroceras sp. Müller) in lettuce and broccoli crops. Agronomía Colombiana, 29(2), 241-247.
Santos, L. dos., Barbosa-Negrisoli, B., Santos, M., & Negrisoli Junior, A. (2018). Population fluctuation and food preference of African snail by horticulture crops. Agroecology, 85, 1-8. https://doi: 10.1590/1808‑1657000402017.
SAS. (2002). SAS/STAT® 9.0 user’s guide. SAS Institute Inc., Cary, NC, USA.
Schüder, I., Port, G., & Bennison, J. (2003). Barriers, repellents, and anti feedants for slug and snail control. Crop Protection, 22, 1033-1038.
SheikhiGorjan, A., Najafi, H., Abassi, S., Saber, F., & Rashid, M. (2009). The pesticide guide of Iran. Pytakht Press.
Shmuel, M., Yaacov, G., & Benjamin, Y. (2004). Management of land snails in cut greenornamentals by copper hydroxide formulations. Crop Protection, 23, 647-650.
Speiser, B., & Hochstrasser, M. (1998). Slug damage in relation to watering regime. Agriculture, Ecosystem and Environment, 70, 273-275.
Speiser, B., & Kistler, C. (2002). Field tests with a molluscicide containing iron phosphate. Crop Protection, 21, 389-394.
  © 2022 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).