وقوع شته فیلوکسرای بلوط Phylloxera quercina (Ferr.) روی Quercus brantii در استان لرستان، غرب ایران

نوع مقاله : علمی پژوهشی-فارسی

نویسندگان

1 مربی مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان لرستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، لرستان، ایران

2 استادیار گروه گیاه‏‌پزشکی، دانشکده کشاورزی، دانشگاه لرستان، لرستان، ایران

چکیده

شته­‌ها یکی از مهم‌ترین آفات کشاورزی و جنگلی هستند که به صورت مستقیم با مکیدن شیره اندام‌­های گیاهی و غیرمستقیم با انتقال عوامل بیماری­‌زای میکروبی به میزبان­‌های گیاهی سبب ایجاد خسارت می­‌شوند. همچنین اشکال دیگر خسارت غیرمستقیم می­‌تواند به صورت ایجاد گال، بدشکلی اندام­‌ها، لکه‌­های رنگ پریده ﺑﺎﻓﺖ ﻣﺮدﮔﻰ هر سه به دلیل ترشح بزاق سمّی و ایجاد منظره کپک دوده­‌ای به علت ترشح عسلک به عنوان منبع غذایی برای قارچ‌­های پوسیده­‌خوار دیده شود. تعداد گونه­‌های شته در حال حاضر بیش از 5200 گونه و در حدود 69 گونه در شش جنس متعلق به خانواده Phylloxeridae است. به استثناء شته فیلوکسرای مو که آفت جهانی تاکستان‌­های صنعتی است، زیستگاه بقیه گونه­‌ها، عرصه‌­های جنگلی و زیست­‌بوم‌­های غیر زراعی می‌­باشد. هدف از مطالعه حاضر شناسایی یک گونه شتۀ تغذیه کننده از بلوط گونه Q. brantii به عنوان مسبب احتمالی بروز لکه‌­های زرد ﺑﺎﻓﺖ ﻣﺮدﮔﻰ روی برگ­‌های درخت‌­های آلوده بود. نمونه‌­های شته روی درخت بلوط Q. brantii در اطراف شهرستان خرم آباد جمع آوری شدند. توالی‌یابی بخشی از قطعه ژنی COI انجام و تبارشناسی مولکولی این گونه با سایر گونه­‌های جنس Phylloxera بررسی و مقایسه شد. به منظور شناسایی ریخت‌شناسی، نمونه­‌های مونته شده (اسلایدهای میکروسکوپی) شته با روش­‌های مرسوم زیر میکروسکوپ نوری و با کمک کلیدهای تاکسونومیک، تشخیص داده شدند. براساس تشخیص مولکولی و ریخت‌شناسی، نمونه­‌ها به عنوان Phylloxera quercina (Ferrari, 1872) شناسایی شدند. مطالعه حاضر اولین گزارش وقوع P. quercina به صورت یک آفت در ناحیه رویشی زاگرس می‌­باشد. قطعه ژنی COI بارکد قادر است تا به همراه ویژگی‌­های ریخت‌شناسی به تشخیص دقیق گونه­‌های جنس Phylloxera در ایران کمک شایانی نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Occurrence of oak leaf phylloxeran aphid, Phylloxera quercina (Ferr.) on Quercus brantii in Lorestan province, western Iran

نویسندگان [English]

  • M. Tavakoli 1
  • A. Hosseini-Chegeni 2
1 Instructor Agricultural Research, Education and Extension Organization (AREEO), Research Center of Agriculture and Natural Resource of Lorestan, Khorramabad, Iran
2 Corresponding author, Assistant Prof., Department of Plant Protection, Faculty of Agriculture, Lorestan University, Khorramabad, Iran. E-mail
چکیده [English]

Background and Objectives
Aphids are one of the most important agricultural and forest pests that may directly injure by sucking the sap of plant organs and indirectly by the transmission of microbial pathogen agents into the plant hosts. Moreover, other indirect forms of damage from feeding may be seen as gall formation, deformation of plant organs, chlorosis / necrosis spotting of the leaves all three due to the injection of poisonous saliva, and the presence of sooty mold view resulting in the honeydew excretion as a food source for the saprophytic fungi. The number of aphids is currently more than 5200 species, of which about 69 species within six genera belong to the family Phylloxeridae. Apart from the grape Phylloxera, a commercial pest of grapevines worldwide, the habitats of remaining species are forest trees and non-agroecosystems. The oak leaf phylloxeran aphids have a complex life cycle as exclusively egg-laying with parthenogenic forms. These aphids overwinter as egg inside seams and shell gaps of small branches or sometimes as first nymphal instar in branches. This study aimed to identify an aphid species feeding of Brant's oak, Quercus brantii, as a probable cause of yellow chlorosis spotting on the leaves of infected trees. Various methods have been proposed to assign unknown specimens to known species using their DNA barcodes.
Materials and Methods
Aphid specimens were collected on Q. brantii oak trees in eight selected forest sites around Khorramabad County, Lorestan Province. They were identified based on molecular and morphological evidences and was subjected to molecular characterization. DNA sequencing of partial COI gene fragment was performed, and the phylogeny of this species was compared with other species within the genus Phylloxera. In order to identify, the mounted aphid samples (microscopic slides) were morphologically identified by the conventional method under a light microscope with the help of taxonomical keys.
 Results
Samples were recognized as Phylloxera quercina (Ferrari, 1872) based on molecular and morphological identification. The phylogenetic tree was constructed as a fully resolved tree with Phylloxera genus as monophyly, dichotomous branching, and near-full bootstrap values.
Discussion
The present study is the first report showing the occurrence of P. quercina as a pest in the Zagros vegetation zone. Here we suggest the annual monitor of seedling oak and investigation of the geographical distribution of pest species. The utility of COI barcode gene fragment, along with the morphological characters, can help accurately identify Phylloxera species in Iran.

کلیدواژه‌ها [English]

  • Yellow spotting
  • Damage
  • Identification
  • Phylogenetic tree
  • COI Gene
Vilcinskas, A. (2016). Preface. In A. Vilcinskas (Ed.). Biology and ecology of aphids (pp. V–VII). London UK, CRC Press.
Lin, H., Downie, D. A., Walker, M. A., Granett, J., & English-Loeb, G. (1999). Genetic structure in native populations of grape Phylloxera (Homoptera: Phylloxeridae). Annals of the Entomological Society of America, 92(3), 376–381. https://doi.org/10.1093/aesa/92.3.376
Favret, C. Aphid species file. Version 5.0/5.0. 2021 [cited 2021 07 November 2021]. Available from: http://Aphid.SpeciesFile.org.
Blackman, R. L., & Eastop, V. F. (1994). Aphids on the world’s trees. an identification and information guide. Wallingford Oxon UK, CABI. 986 pp.
Favret, C., Blackman, R. L., Miller, G. L., & Victor, B. (2016). Catalog of the phylloxerids of the world (Hemiptera, Phylloxeridae). ZooKeys, 629, 83-101.
Blackman, R. L., & Eastop, V. F. (2007). Taxonomic issues. In H. F. van Emden, & R. Harrington (Eds.), Aphids as crop pests (pp. 1–29). Wallingford UK, CAB International.
Rezvani, A. (2001). Key to the identification of Iranian aphids. Tehran Iran, Agricultural Research, Education and Extension Organization (AREEO). 289 pp. [In Persian]
Rezvani, A. (2004). Aphids on trees & shrubs in Iran. Tehran Iran, Plant Pests and Diseases Research Institute. 289 pp. [In Persian]
Momeni Shahraki, F., Minaei, K., & Barjadze, S. (2019). Checklist of Iranian Aphids (Hemiptera: Sternorrhyncha: Aphidomorpha). Journal of Insect Biodiversity and Systematics, 5(4), 269–300.
Hebert, P. D. N., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B, 270, 313–321. https://doi.org/10.1098/rspb.2002.2218
Hebert, P. D. N., & Gregory, T. R. (2005). The promise of DNA barcoding for taxonomy. Systematic Biology, 54(5), 852–859. https://doi.org/10.1080/10635150500354886
Niu, R., Gao, X., Luo, J., Wang, L., Zhang, K., Li, D., Ji, J., Cui, J., Zhu, X., & Zhang, S. (2021). Mitochondrial genome of Aphis gossypii Glover cucumber biotype (Hemiptera: Aphididae). Mitochondrial DNA Part B, 6(3), 922–924. https://doi.org/10.1080/23802359.2021.1888328
Manzano, M. R., Tálaga-Taquinas, W., Melo-Cerón, C. I., Lagos-Álvarez, Y. B., Duque-Gamboa, D. N., & Toro-Perea, N. (2020). Identification and life history of aphids associated with chili pepper crops in southwestern Colombia. Universitas Scientiarum, 25(2), 175–200. https://doi.org/10.11144/Javeriana.SC25-2.ialh
Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15.
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87(6), 651–701. https://doi.org/10.1093/aesa/87.6.651
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054
Croci, F., Bracalini, M., Bonuomo, L., Tiberi, R., & Niccoli, A. (2012). Bioecology of oak Phylloxera and its natural enemies on urban and peri-urban holm oaks. IOBC-WPRS Bulletin, 76, 263–270.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N., George, C., & Goldstein, A. (2009). The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmospheric Chemistry and Physics, 9(14), 5155-5236.
Lubiarz, M. (2007). Life cycle and number dynamics of Phylloxera sp. on pedunculate oak (Quercus robur L.) in industrial and protected areas. Aphids and other Hemipterous Insects, 13, 137–144.
Laamari, M. (2016). First report of Phylloxera quercus (Hemiptera: Sternorrhyncha: Aphididae) in Algeria. EPPO Bulletin, 46(3), 576–579. https://doi.org/10.1111/epp.12323
Mohammad, M., & Abdulla, A. (1985). Ecological studies on a corn aphid Phylloxera quercus Boyer (Phylloxeridae, Homoptera) in Iraq. Zanco (Iraq), 3(1), 69-76 [In Arabic].
  © 2022 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).