شناسایی آنتاگونیست‏های جدید گیرنده اکدایزون ملخ صحرایی، (Schistocerca gregaria)، با استفاده از مدل‏سازی محاسباتی

نوع مقاله : علمی پژوهشی -انگلیسی

نویسنده

استادیار گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

ملخ صحرایی، Schistocerca gregaria Forsskål، به عنوان مخرب‌‏ترین آفت مهاجر به مناطق وسیعی از زمین‏‌های زراعی و مراتع در نقاط مختلف جهان خسارت وارد می‏‌کند. به طور معمول، ملخ‏‌های صحرایی با استفاده از حشره‏‌کش‏‌های شیمیایی کنترل می‏‌شوند. با این حال، به دلیل اثرات جانبی حشره‏‌کش‏‌های رایج بر سلامت انسان، محیط زیست و ظهور حشرات مقاوم به حشره‏‌کش‏‌ها، توسعه برنامه‏‌های جایگزین مدیریت آفت ضروری به نظر می‏‌رسد. باتوجه به نقش کلیدی گیرنده اکدایزون (EcR) در رشد و نمو حشرات، این مطالعه با هدف استفاده از برنامه‌‏های محاسباتی در جهت کشف ترکیباتی با ویژگی‏‌های آنتاگونیستی برای گیرنده اکدایزون ملخ صحرایی صورت پذیرفت. درک ویژگی‌‏های بیوشیمیایی و ساختاری گیرنده اکدایزون جهت طراحی آنتاگونیست‏‌های اختصاصی مورد نیاز است و بنابراین در این مطالعه ابتدا خواص فیزیکوشیمیایی، ساختارهای ثانویه و توپولوژی گیرنده اکدایزون ملخ صحرایی با استفاده از برنامه‏‌های بیوانفورماتیکی مورد بررسی قرار گرفت. مدل‏‌های ساختاری سه بعدی گیرنده اکدایزون با استفاده از SWISS-MODEL پیش‏‌بینی شده و کیفیت مدل‏‌های حاصل با استفاده از برنامه‌‏های مختلف مورد ارزیابی قرار گرفت. مطالعات داکینگ مولکولی بین هشت مهارکننده پروتئازی مشتق شده از ملخ‌‏ها و مدل پیش‌‏بینی شده گیرنده اکدایزون نشان‌‏دهنده پتانسیل مطلوب آنتاگونیستی همه مهارکننده‌‏های مورد مطالعه در برابر گیرنده اکدایزون بود. با این وجود، مهارکننده 1KJ0 در میان‌‏کنش با گیرنده اکدایزون، مطلوب‌‏ترین امتیاز داکینگ، انرژی پیوند، ثابت تفکیک، تعداد پیوندهای هیدروژنی و ارتباطات غیرپیوندی را از خود بروز داد که حاکی از پتانسیل آنتاگونیستی بالای 1KJ0 در مقابل گیرنده اکدایزون بود. نتایج حاصل از این پژوهش، اهمیت مطالعات محاسباتی را در شناسایی آنتاگونیست‏‌های جدید علیه پروتئین هدف را نشان می‏‌دهد. با این حال، تحقیقات in vitro و in vivo جهت اعتبار بخشیدن به ترکیب معرفی شده مورد نیاز است.

کلیدواژه‌ها


عنوان مقاله [English]

Identification of novel antagonists of the ecdysone receptor from the desert locust (Schistocerca gregaria) by in silico modelling

نویسنده [English]

  • S. A. Hemmati
Assistant Professor, Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

The desert locust, Schistocerca gregaria Forsskål, is the most destructive migratory pest, which continually damages large areas of cropland and pastures in various parts of the world. Chemical insecticides are currently being used to control desert locusts. However, due to the harmful effects of conventional insecticides on human health and the environment, as well as the emergence of insecticides-resistant insects, alternative pest management programs must be developed. Given the critical role of the ecdysone receptor (EcR) in insect development, this study aimed to use computational tools to identify compounds with antagonistic properties against the desert locust EcR. Understanding the biochemical and structural properties of EcR is required for designing target-specific inhibitors, so we first used several bioinformatics tools to investigate the physicochemical properties, secondary structures, and topology of EcR from S. gregaria. SWISS-MODEL was used to predict the three-dimensional structural models of EcR, and the reliability of the predicted model was validated by various programs. Molecular docking studies between eight locust-derived protease inhibitors and the predicted model of EcR revealed the antagonistic capacity of all the studied inhibitors against EcR. However, the inhibitor 1KJ0 had the best docking score, the lowest binding energy and dissociation constant, and the greatest number of hydrogen bonds and non-bonded contacts with EcR, indicating its strong antagonistic potency against EcR. Our findings highlight the importance of computational studies in identifying novel antagonists to a target protein. However, in vitro and in vivo investigations are further required to validate the potency of the introduced compound.

کلیدواژه‌ها [English]

  • Schistocerca gregaria
  • locust protease inhibitors
  • molecular docking
  • pest management
Benkert, P., Tosatto, S. C. E., & Schomburg, D. (2008). QMEAN: A Comprehensive Scoring Function for Model Quality Assessment. Proteins: Structure, Function, and Bioinformatics, 71(1), 261–277. https://doi.org/10.1002/prot.21715
Bowie, J., Luthy, R., & Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science, 253(5016), 164–170. https://doi.org/10.1126/science.1853201
Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
Cullen, D. A., Cease, A. J., Latchininsky, A. V., Ayali, A., Berry, K., Buhl, J., De Keyser, R., Foquet, B., Hadrich, J. C., Matheson, T., Ott, S. R., Poot-Pech, M. A., Robinson, B. E., Smith, J. M., Song, H., Sword, G. A., Vanden Broeck, J., Verdonck, R., Verlinden, H., & Rogers, S. M. (2017). From Molecules to Management: Mechanisms and Consequences of Locust Phase Polyphenism. In Advances in Insect Physiology (Vol. 53, pp. 167–285). Elsevier. https://doi.org/10.1016/bs.aiip.2017.06.002
de Beer, T. A. P., Berka, K., Thornton, J. M., & Laskowski, R. A. (2014). PDBsum Additions. Nucleic Acids Research, 42(D1), D292–D296. https://doi.org/10.1093/nar/gkt940
de Vries, S. J., van Dijk, M., & Bonvin, A. M. J. J. (2010). The HADDOCK Web Server for Data-driven Biomolecular Docking. Nature Protocols, 5(5), 883–897. https://doi.org/10.1038/nprot.2010.32
Dobson, H. M. (2001). Desert Locust Guidelines 4. Control. Food and Agriculture Organization of the United Nations, 47.
Ekoka, E., Maharaj, S., Nardini, L., Dahan-Moss, Y., & Koekemoer, L. L. (2021). 20-Hydroxyecdysone (20E) signaling as a promising target for the chemical control of malaria vectors. Parasites & Vectors, 14(1), 86. https://doi.org/10.1186/s13071-020-04558-5
Fahrbach, S. E., Smagghe, G., & Velarde, R. A. (2012). Insect Nuclear Receptors. Annual Review of Entomology, 57(1), 83–106. https://doi.org/10.1146/annurev-ento-120710-100607
Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein Identification and Analysis Tools on the ExPASy Server. In J. M. Walker (Ed.), The Proteomics Protocols Handbook (pp. 571–607). Humana Press. https://doi.org/10.1385/1-59259-890-0:571
Geourjon, C., & Deléage, G. (1995). SOPMA: Significant Improvements in Protein Secondary Structure Prediction by Consensus Prediction from Multiple Alignments. Bioinformatics, 11(6), 681–684. https://doi.org/10.1093/bioinformatics/11.6.681
Hassaan, M. A., & El Nemr, A. (2020). Pesticides Pollution: Classifications, Human Health Impact, Extraction and Treatment Techniques. The Egyptian Journal of Aquatic Research, 46(3), 207–220. https://doi.org/10.1016/j.ejar.2020.08.007
Hu, X., Yin, B., Cappelle, K., Swevers, L., Smagghe, G., Yang, X., & Zhang, L. (2018). Identification of Novel Agonists and Antagonists of the Ecdysone Receptor by Virtual Screening. Journal of Molecular Graphics and Modelling, 81, 77–85. https://doi.org/10.1016/j.jmgm.2018.02.016
Kennedy, J. S. (1951). The Migration of the Desert Locust (Schistocerca gregaria Forsk.) I. The behaviour of Swarms. II. A Theory of Long-range Migrations. Philosophical Transactions of the Royal Society B, 235(625), 163–290. https://doi.org/10.1098/rstb.1951.0003
Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. L. (2001). Predicting Transmembrane Protein Topology with a Hidden Markov Model: Application to Complete Genomes. Journal of Molecular Biology, 305(3), 567–580. https://doi.org/10.1006/jmbi.2000.4315
Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A Program to Check the Stereochemical Quality of Protein Structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
Le Gall, M., Overson, R., & Cease, A. (2019). A Global Review on Locusts (Orthoptera: Acrididae) and Their Interactions with Livestock Grazing Practices. Frontiers in Ecology and Evolution, 7(263), 1–24. https://doi.org/10.3389/fevo.2019.00263
Lin, X., Li, X., & Lin, X. (2020). A Review on Applications of Computational Methods in Drug Screening and Design. Molecules, 17. https://doi.org/10.3390/molecules25061375
McDougall, P. (2016). The Cost of New Agrochemical Product Discovery, Development and Registration in 1995, 2000, 2005-8 and 2010-2014. R&D expenditure in 2014 and expectations for 2019. 41.
Muema, J. M., Bargul, J. L., Njeru, S. N., Onyango, J. O., & Imbahale, S. S. (2017). Prospects for Malaria Control Through Manipulation of Mosquito Larval Habitats and Olfactory-mediated Behavioural Responses Using Plant-derived Compounds. Parasites & Vectors, 10(1), 184. https://doi.org/10.1186/s13071-017-2122-8
Nakagawa, Y., & Henrich, V. C. (2009). Arthropod Nuclear Receptors and Their Role in Molting: Arthropod Nuclear Receptors. FEBS Journal, 276(21), 6128–6157. https://doi.org/10.1111/j.1742-4658.2009.07347.x
OCHA. (2020). Islamic Republic of Iran: Flash Update—As of 8 April 2020.
OHCA. (2020). Islamic Republic of Iran: Flash Update—As of 28 April 2020.
Peshin, R., & Dhawan, A. K. (Eds.). (2009). Integrated Pest Management: Innovation-Development Process. Springer Netherlands. https://doi.org/10.1007/978-1-4020-8992-3
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera- A Visualization System for Exploratory Research and Analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
Ren, B., Peat, T. S., Streltsov, V. A., Pollard, M., Fernley, R., Grusovin, J., Seabrook, S., Pilling, P., Phan, T., Lu, L., Lovrecz, G. O., Graham, L. D., & Hill, R. J. (2014). Unprecedented Conformational Flexibility Revealed in the Ligand-binding Domains of the Bovicola ovis Ecdysone Receptor (EcR) and Ultraspiracle (USP) Subunits. Acta Crystallographica Section D Biological Crystallography, 70(7), 1954–1964. https://doi.org/10.1107/S1399004714009626
Schwede, T. (2003). SWISS-MODEL: An Automated Protein Homology-modeling Server. Nucleic Acids Research, 31(13), 3381–3385. https://doi.org/10.1093/nar/gkg520
Simpson, S. J., & Sword, G. A. (2008). Locusts. Current Biology, 18(9), R364–R366. https://doi.org/10.1016/j.cub.2008.02.029
Studer, G., Rempfer, C., Waterhouse, A. M., Gumienny, R., Haas, J., & Schwede, T. (2020). QMEANDisCo—Distance Constraints Applied on Model Quality Estimation. Bioinformatics, 36(6), 1765–1771. https://doi.org/10.1093/bioinformatics/btz828
Subramanian, S., & Shankarganesh, K. (2016). Insect Hormones (as Pesticides). In Ecofriendly Pest Management for Food Security (pp. 613–650). Elsevier. https://doi.org/10.1016/B978-0-12-803265-7.00020-8
Symmons, P. M., & Cressman, K. (2001). Desert Locust Guidelines 1. Biology and behaviour. Food and Agriculture Organization of the United Nations, 25.
Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed Atlas of Surface Topography of Proteins. Nucleic Acids Research, 46(W1), W363–W367. https://doi.org/10.1093/nar/gky473
Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive Web Service for the Recognition of Errors in Three-dimensional Structures of Proteins. Nucleic Acids Research, 35(Web Server), W407–W410. https://doi.org/10.1093/nar/gkm290
Wright, J. E. (1976). Environmental and Toxicological Aspects of Insect Growth Regulators. Environmental Health Perspectives, 14, 127–132. https://doi.org/10.1289/ehp.7614127
Yao, T.-P., Forman, B. M., Jiang, Z., Cherbas, L., Chen, J.-D., McKeown, M., Cherbas, P., & Evans, R. M. (1993). Functional Ecdysone Receptor Is the Product of EcR and Ultraspiracle Genes. Nature, 366(6454), 476–479. https://doi.org/10.1038/366476a0
  © 2021 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).