تأثیر برهم‌کنش تغذیه‌ای بین محرک‌های رشد گیاه و شته سبز هلو، Myzus persicae (Sulzer)، بر فرآیند‌های فیزیولوژیکی کفشدوزک دو نقطه‌ای، Adalia bipunctata L.

نوع مقاله : علمی پژوهشی-فارسی

نویسندگان

1 دکتری حشره‌شناسی، گروه گیاه‌پزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 دکتری حشره‌شناسی، گروه گیاه‌پزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه لرستان، خرم‌آباد، ایران

3 استاد، گروه گیاه‌پزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

4 دانشیار، گروه گیاه‌پزشکی، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

چکیده

کفشدوزک دو نقطه‌ای، Adalia bipunctata،گونه‌ای چندی‌ن‏خوار بوده که عمدتاً از شته‌ها از جمله شته سبز هلو، به عنوان یکی از آفات مهم گلخانه و مزارع، تغذیه می‌کنند. در این تحقیق تأثیر محلول‌پاشی سولفات روی بر گیاه فلفل‌دلمه‌ای، و همچنین تأثیر کود آلی ورمی‌کمپوست 30 درصد و کود زیستی Bacillus subtilis بر بستر بذری گیاه فلفل دلمه‌‏ای بر فعالیت‌های فرآیندهای فیزیولوژیکی مهم A. bipunctata مورد بررسی قرار گرفت. نتایج نشان داد که بین فعالیت‌­های آنزیم‌های گوارشی، آنزیم‌های دخیل در متابولیسم حدواسط‌ها و ترکیبات ذخیره‌ای کفشدوزک دو نقطه‌ای، پرورش‌‌یافته روی شته‌‌های تغذیه‌ کننده از گیاه فلفل‌‌دلمه‌ای تیمار شده با کودهای مختلف، تفاوت معنی‌داری وجود داشت. کم‌ترین میزان فعالیت پروتئاز کل کفشدوزک شکارگر روی شاهد در مقایسه با سایر تیمارها مشاهده شد. میزان فعالیت الاستاز کفشدوزک روی B. subtilis نسبت به سایر تیمارها افزایش پیدا کرد. بیش‌ترین و کم‌ترین میزان فعالیت کاتپسین B در کفشدوزک به ترتیب روی B. subtilis و کود آلی ورمی‌کمپوست 30 درصد ثبت شد. بیش‌ترین و کم‌ترین میزان لیپوپروتئین با چگالی کم (LDL) در کفشدوزک دو نقطه‌ای به ترتیب روی شاهد و تیمار B. subtilis مشاهده گردید. کفشدوزک شکارگر روی B. subtilis بیش‌ترین میزان پروتئین، تری‌گلیسرید و گلیکوژن را در مقایسه با سایر تیمارها داشتند. همچنین، کم‌ترین میزان تری‌گلیسرید و گلیکوژن روی کود آلی ورمی‌کمپوست 30 درصد مشاهده شد. بنابراین، برهم‌کنش گیاه-گیاه‌‌خوار تحت تأثیر کود زیستی منجر به افزایش فعالیت آنزیم‌های گوارشی و ترکیبات ذخیره­ای در کفشدوزک شده که می‌تواند همراه با بکارگیری عوامل کنترل بیولوژیک در برنامه‌های مدیریت تلفیقی شته سبز هلو در گلخانه‌­ها مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of nutritional interaction between plant growth stimulants and peach green aphid (Myzus persicae Sulzer) on physiological processes of two-spotted ladybird (Adalia bipunctata L.)

نویسندگان [English]

  • M. Mardani-talaee 1 2
  • G. Gadir Nouri- Ganblani 3
  • A. zibaee 4
  • J. Jabraeil Razmjou 3
  • M. Hassanpour 3
  • B. Naseri 3
1 Ph. D. of Agricultural Entomology, Professor, Associate Professor, Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.|Ph. D. of Agricultural Entomology, Department of Plant Protection, College of Agriculture, Lorestan University, Khorramabad, Iran.
2 Ph. D. of Agricultural Entomology, Professor, Associate Professor, Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.|Ph. D. of Agricultural Entomology, Department of Plant Protection, College of Agriculture, Lorestan University, Khorramabad, Iran.
3 Professor, Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
4 Associate Professor, Department of Plant Protection, Faculty of Agricultural Sciences University of Guilan, Rasht, Iran
چکیده [English]

Background and Objectives
The effects of plant growth-promoting activities involving biological, chemical, and organic fertilizers are partly well studied for pest insects. Still, studies concentrating on the impacts of such treatments on predators are uncommon. Plant growth promoting treatments- biological, -organic and -chemical fertilizers alter the biochemical composition of plants, which can impact the multitrophic interactions. Beneficial soil microorganisms such as plant growth-promoting rhizobacteria (PGPR) can affect nutritional quality, secondary metabolites, enzymes, phytohormones, and volatile organic compounds (VOCs) of plants, which may influence host plant-insect herbivore- natural enemies interactions. The predatory ladybird, Adalia bipunctata, is polyphagous species that mainly feed on aphids, especially the green peach aphid, Myzus persicae. It is a polyphagous insect that can cause damage to a lot of crops in fields and greenhouses. There is no published research concerning the effects of various plant growth-promoting on physiological performance of A. bipunctata. Thus, we investigated the impacts of various plant growth promoting treatments, viz. no fertilizer (untreated control), one type of PGPRs, vermicompost 30% (v/v), and zinc sulfate on physiological performance of A. bipunctata through M. persicae reared on treated Capsicum annum L. (Solanaceae).
Materials and Methods
Bell pepper seeds of the California Wonder cultivar were developed in 3L plastic pots and were used in bioassays when they reached 4-6 leaf stage under greenhouse conditions. Then, aphids were obtained from tomato farms from Meshkin-Shahr (Ardabil, Iran) and transmitted to bell pepper grown in the greenhouse. To keep an appropriate sub-sucking colony, every week the individuals were transferred from infested bell peppers to fresh plants. Adults of A. bipunctata were obtained from alfalfa farms of Ardabil, Iran, and transmitted to the laboratory, in a growth chamber. Mating pairs were selected and kept together in separate plastic jars (6 by 12 cm2) and were reared on pepper plants infested with sub-sucking insects as prey. In the study, the effect of spraying zinc sulfate on bell pepper plants and addition of the organic fertilizer of vermicompost 30% and the biologic fertilizers of Bacillus subtilis to the growing medium of bell pepper on the activities of critical physiological processes of A. bipunctata fed on M. persicae using a completely randomized design under greenhouse conditions. Then 5 adult predators were randomly selected from each treatment and homogenized with a hand pounder in 1 mL pure ice-cold water. After that, the specimens were centrifuged at 13,000 g pending 15 min at 4 ◦C. The top layer was collected and kept at 20 ◦C during biochemical analyses. All physiological enzymes assay based on the defined method were conduted in three biological replications. Then, data were analyzed using a one-way analysis of variance (ANOVA) followed by the Tukey test with the MINITAB software.
Results
The results demonstrated a significant difference among the digestive enzymes activities, intermediates, and storage compounds of the predatory ladybug reared on aphids fed on bell peppers treated with different fertilizers. The lowest total protease activity of ladybird was observed in the control compared to other treatments. The elastase activity of ladybug increased on B. subtilis compared to other treatments. The highest and lowest amounts of cathepsin B activity in ladybugs were recorded on B. subtilis and vermicompost 30%, respectively. The highest and lowest low density lipophore (LDL) values were observed in A. bipunctata on control and B. subtilis treatment, respectively. Predatory ladybug had the highest protein, triglyceride, and glycogen on B. subtilis compared to other treatments. The lowest triglyceride and glycogen was also observed on vermicompost 30%.
Discussion
Plant-herbivore interactions under the influence of bio-fertilizer have led to increased digestive enzymes activity and storage compounds in ladybug, which could be used in combination with the use of biological control agents in integrated management programs of the green peach aphid in greenhouses.

کلیدواژه‌ها [English]

  • Digestive enzymes
  • Tri-trophic level
  • Storage macromolecules
  • Intermediate metabolism
Alizamani, T., Shakarami, J., Mardani-Talaee, M., Zibaee, A. & Serrao, J. E. (2020). Direct interaction between micronutrients and bell pepper (Capsicum annum L.), to affect fitness of Myzus persicae (Sulzer). Journal of Plant Protection Research, 60, 253–262. DOI: https://doi.org/10.24425/jppr.2020.133319
Bernfeld, P. (1955). Amylases, α and β. Methods in Enzymology, 1, 149–158. DOI: http://dx.doi.org/10.1016/0076-6879(55)01021-5
Bessey, O. A., Lowry, O. H. & Brock, M.J. (1946). A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. The Journal of Biological Chemistry, 164, 321–329.
Chun, Y. & Yin, Z. D. (1998). Glycogen assay for diagnosis of female genital Chlamydia trachomatis infection. Journal of Clinical Microbiology, 36, 1081–1082. DOI: 10.1128/JCM.36.4.1081-1082.1998
Chavez-Mendoza, C.; Sánchez, E.; Carvajal-Millán, E.; Muñoz-Márquez, E. & Guevara-Aguilar, A. (2013). Characterization of the nutraceutical quality and antioxidant activity in bell pepper in response to grafting. Molecules, 18, 15689–15703. DOI: 10.3390/molecules181215689.
De Clercq, P., Bonte, M., Van Speybroeck, K., Bolckmans, K. & Deforce, K. (2005). Development and reproduction of Adalia bipunctata (Col., Coccinellidae) on eggs of Ephestia kuehniella (Lep.: Phycitidae) and pollen. Pest Management Science, 61, 1129–1132. DOI: 10.1002/ps.1111.
Elpidina, E. N., Vinokurov, K. S., Gromenko, V. A., Rudenskaya, Y. A., Dunaevsky, Y. E. & Zhuzhikov, D. P. (2001). Compartmentalization of proteinases and amylases in Nauphoeta cinerea midgut. Archives of Insect Biochemistry Physiology, 48, 206–216. DOI: https://doi.org/10.1002/arch.10000.
Ferreira, C. & Terra, W. R. (1983). Physical and kinetic properties of a plasma- membrane-ound P- Dglucosidase (cellobiase) from midgut cells of an insect Rhynchosciara americana larva. Biochemical Journal, 213, 43–51. DOI: 10.1042/bj2130043.
Fossati, P. & Prencipe, L. (1982). Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clinical Chemistry, 28, 2077–2080.
Frantz, D. J., Gardner, J., Hoffmann, P. M. & Jahn, M. M. (2004). Greenhouse screening of Capsicum accessions for resistance to green peach aphid (Myzus persicae). Horticultural Science, 39, 1332–1335. DOI: https://doi.org/10.21273/HORTSCI.39.6.1332.
Gadhave, K. R., Finch, P., Gibson, T. M. & Gange, A. C. (2016). Plant growthpromoting Bacillus suppress Brevicoryne brassicae field infestation and trigger density- dependent and density- independent natural enemy responses. Journal of Pest Science, 89, 985–992. DOI 10.1007/s10886-016-0689-8.
Gruden, K., Strukelj, B., Popovic, T., Lenarcic, B., Berec, T., Brzin, J., Kregar, I., Velikonja, J. H., Stiekema, W. J., Bosch, D. & Jongsma, M. A. (1998). The cystein protease activity of Colorado potato beetle Leptinotarsa decemlineata (Say) guts, which is insensitive to potato protease inhibitors, is inhibited by thyroglobulin type- 1 domain inhibitors. Insect Biochemistry and Molecular Biology, 28, 549–560.
Harun-Or-Rashid, M. D. & Chung, R. Y. (2017). Induction of Systemic Resistance against Insect Herbivores in Plants by Beneficial Soil Microbes. Frontiers in Plant Science, 8, 1816. DOI: https://doi.org/10.3389/fpls.2017.01816.
Heinen, R., Biere, A., Harvey, A. J. & Bezemer, M. T. (2018). Effects of Soil Organisms on Aboveground Plant-Insect Interactions in the Field: Patterns, Mechanisms and the Role of Methodology. Frontiers in Ecology and Evolution, 6, 106. DOI: https://doi.org/10.3389/fevo.2018.00106.
Horie, Y. & Watanabe, H. (1980). Recent advances in sericulture. Annual Review of Entomology, 25, 49–71.
Khosa, S. S., Younis, A., Rayit, A., Yasmeen, S. & Riaz, A. (2011). Effect of foliar application of macro and micro nutrients on growth and flowering of Gerbera jamesonii L. American-Eurasian Journal of Agricultural & Environmental Sciences, 11, 736–757.
King, J. (1965). The dehydrogenases or oxidoreductases. Lactate dehydrogenase. In: van Nostrand, D. (Ed.), Practical clinical enzymology, (pp. 83–93) Elsevier, London.
Klowden, M. J. (2007). Physiological Systems in Insects. 2nd (Ed.), Elsevier, New York, 688 p.
Krem, M. M., & Di Cera, E. (2001). Molecular markers of serine protease evolution. The EMBO journal20(12), 3036–3045. https://doi.org/10.1093/emboj/20.12.3036.
Kwiterovich, J. P. O. (2000). The metabolic pathways of high-density lipoprotein, low-density lipoprotein, and triglycerides: a current review. American Journal of Cardiology, 86, 5–10. DOI: doi: 10.1016/s0002-9149(00)01461-2.
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275. DOI: https://doi.org/10.1016/S0021-9258(19)52451-6
Lucy, M., Reed, E. & Glick, B. R. (2004). Applications of free living plant growth promoting rhizobacteria. Antonie van Leeuwenhoek, 86, 1–25. DOI: 10.1023/B:ANTO.0000024903.10757.6e.
Mardani- Talaee, M., Zibaee, A., Nouri- Ganbalani, G., Rahimi, V. & Tajmiri, P. (2015). Effect of vermicompost on nutrition and intermediary metabolism of Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Archives of Phytopathology and Plant Protection, 8, 623–645. DOI:10.1080/03235408.2015.1091154
Mardani-Talaee, M., Nouri-Ganblani, G., Razmjou, J., Hassanpour, M., Naseri, B. & Asgharzadeh, A., (2016a). Effects of chemical, organic and bio-fertilizers on some secondary metabolites in the leaves of bell pepper (Capsicum annuum) and their impact on life table parameters of Myzus persicae (Hemiptera: Aphididae). Journal of Economic Entomology, 109, 1231-1240. DOI: 10.1093/jee/tov389.
Mardani-Talaee, M., Razmjou, J., Nouri-Ganblani, G., Hassanpour, M. & Naseri, B. (2017). Impact of Chemical, Organic and Bio-Fertilizers Application on Bell Pepper, Capsicum annuum L. and Biological Parameters of Myzus persicae (Sulzer) (Hem.: Aphididae). Neotropical Entomology, 46, 578–586. DOI: https://doi.org/10.1007/s13744-017-0494-2.
Mardani-Talaee, M., Zibaee, A., Nouri-Ganblani, G. & Razmjou, J. (2016b). Chemical and organic fertilizers affect physiological performance and antioxidant activities in Myzus persicae (Hemiptera: Aphididae). Invertebrate Survival Journal, 13, 122–133.
Megali, L., Schlau, B. & Rasmann, S. (2015). Soil microbial inoculation increases corn yield and insect attack. Agronomy for Sustainable Development, 35, 1511–1519. DOI: https://doi.org/10.1007/s13593-015-0323-0
Nation, J. L. (2008). Insect physiology and biochemistry, 2nd (Ed.), CRC press, London.
Noret, N., Josens, G., Escarré, J., Lefèbvre, C., Panichelli, S. & Meerts, P. (2007). Development of Issoria lathonia (Lepidoptera: Nymphalidae) on zinc‐accumulating and nonaccumulating Viola species (Violaceae). Environmental Toxicology and Chemistry, 26, 565–571.
Oppert, B., Kramer, K. J. & Mc Gaughey, W. H. (1997). Rapid microplate assay of proteinase mixtures, Journal of Biotechnology, 23, 70–72. DOI: 10.2144/97231bm14.
Özgökçe, M. S., Chi, H., Atlıhan, R. & Kara, H. (2018). Demography and population projection of Myzus persicae (Sulzer.) (Hemiptera: Aphididae) on five pepper (Capsicum annuum L.) cultivars. Phytoparasitica, 46, 153–167. DOI: 10.1007/s12600-018-0651-0.
Pascual-Ruiz, S., Carrillo, L., Álvarez-Alfageme, F., Ruíz, M., Castañera, P. & Ortego, F. (2009). The effects of different prey regimes on the proteolytic digestion of nymphs of the spined soldier bug, Podisus maculiventris (Hemiptera: Pentatomidae). Bulletin of Entomological Research, 99(5), 487-491. Doi:10.1017/S0007485308006561
Pourya, M., Shakarami, J., Mardani-Talaee, M., Sadeghi, A. & Serrao, J. E. (2020). Induced resistance in wheat Triticum aestivum L. by chemical-and bio-fertilizers against English aphid Sitobion avenae (Fabricius) (Hemiptera: Aphididae) in greenhouse. International Journal of Tropical Insect Science, 40, 1043–1052. DOI: https://doi.org/10.1007/s42690-020-00164-1.
Pourya, M., Shakarami, J., Mardani-Talaee, M., Sadeghi, A. & Serrao, J. E. (2021). Bio-fertilizers and micronutrients affect the digestibility, detoxification, and intermediary metabolisms of English grain aphid, Sitobion avenae, in greenhouse.  Journal of Asia-Pacific Entomology, 24, 704–710. DOI. https://doi.org/10.1016/j.aspen.2021.06.003
Razmjou, J., Mohammadi, M. & Hassanpour, M. (2011). Effect of vermicompost and cucumber cultivar on population growth attributes of the melon aphid (Hemiptera: Aphididae). Journal of Economic Entomology, 104, 1379–1383. DOI: https://doi.org/10.1603/EC10120.
Sarfraz, M., Dosdall, L. M. & Keddie, B. A. (2009a). Bottom-up effects of host plant nutritional quality on Plutella xylostella and top-down effects of herbivore attack on plant compensatory ability. European Journal of Entomology, 106, 583–594. DOI: 10.14411/eje.2009.073.
Sarfraz, M., Dosdall, L. M. & Keddie, B. A. (2009b). Host plant nutritional quality affects the performance of the parasitoid Diadegma insulare. Biological control, 51, 34–41. DOI:  10.1016/j.biocontrol.2009.07.004.
Schaefer, E. J. & McNamara, J. (1997). Overview of the diagnosis and treatment of lipid disorders, In: Rifia, N., Warnick, G. R. & Dominiczak, M. H. Handbook of lipoprotein testing. (eds., pp 25–48) Washington: AACC press.
Schädler, M., Brandl, R. & Kempel, A. (2010). Host plant genotype determines bottom‐up effects in an aphid‐parasitoid‐predator system. Entomologia Experimentalis et Applicata, 135, 162-169.
Selin-Rani, S., Senthil-Nathan, S., Revathi, K., Chandrasekaran, R., Thanigaivel, A., Vasantha-Srinivasan, P., Ponsankar, A., Edwin, E. S. & Pradeepa, V. (2016). Toxicity of Alangium salvifolium Wang chemical constituents against the tobacco cutworm Spodoptera litura Fab. Pesticide Biochemistry and Physiology. 126, 92–101. https://doi.org/ 10.1016/j.pestbp.2015.08.003.
Stoyanova, Z. & Doncheva, S. (2002). The effect of zinc supply and succinate treatment on plant growth and mineral uptake in pea plant. Brazilian Journal of Plant Physiology, 14, 111–116. DOI: 10.1590/S1677-04202002000200005.
Szasz, G. (1976). Reaction-rate method for gamma glutamyl transferase activity in serum. Clinical Chemistry, 22, 2051–2055. DOI: https://doi.org/10.1093/clinchem/22.12.2051.
Thomas, L. (1998). Clinical laboratory diagnostic, THBooks Verlasgesellschaft, (1th eds., pp 89–94) Frankfurt.
Terra, W. R. & Ferreira, C. (2005). Biochemistry of digestion. In: Lawrence, I. G., Kostas, I. & Sarjeet, S. G., Comprehensive Molecular Insect Science, (eds., pp 171-224), Elsevier, Oxford.
Tsujita, T., Ninomiya, H. & Okuda, H. (1989). P-nitrophenyl butyrate hydrolyzing activity of hormonesensitive lipase from bovine adipose tissue. Journal of Lipid Research, 30, 997–1004.
Valenzuela-Soto, J. H., Estrada-Hernández, M. G., Ibarra-Laclette, E. & DélanoFrier, J. P. (2010). Inoculation of tomato plants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards whitefly Bemisia tabaci development. Planta, 231, 397–410. DOI: 10.1007/s00425-009-1061-9.
Walker, A. J., Ford, L., Majerus, M. E. N., Geoghegan,I. E., Birch, N., Gatehouse, J. A. & Gatehouse A. M. R. (1998). Characterisation of the mid-gut digestive proteinase activity of
the two-spot ladybird (Adalia bipunctata L.) and its sensitivity to proteinase inhibitors. Insect Biochemistry and Molecular Biology, 28, 173-180. https://doi.org/10.1016/S0965-1748(97)00114-8.
Wyss, E., Villiger, M., Hemptinne, J. L., Müller-Schärer, H. (1999). Effects of augmentative releases of eggs and larvae of the two- spot ladybird beetle, Adalia bipunctata, on the abundance of the rosy apple aphid, Disaphis plantaginea, in organic apple orchards. Entomologia Experimentalis et Applicata, 90, 167–173. DOI: https://doi.org/10.1046/j.1570-7458.1999.00435.x
 © 2022 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/