تأثیر غلظت زیرکشنده حشره‌کش پی‌متروزین بر فراسنجه‌های رشد جمعیت و فعالیت آنزیم‌های استراز در شته سبز گندم Schizaphis graminum Rondani (Hemiptera: Aphididae)

نوع مقاله : علمی پژوهشی-فارسی

نویسندگان

1 استاد، گروه گیاه پزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 دانش‌آموخته دکتری تخصصی، گروه گیاه‌پزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

3 استاد گروه گیاه‌پزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

4 استاد، گروه شیمی، دانشکده علوم، دانشگاه محقق اردبیلی، اردبیل، ایران.

5 دانشجوی دکتری شیمی فیزیک، دانشکده علوم، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

شته سبز گندم،Schizaphis graminum Rondani (Hemiptera: Aphididae) ، یکی از آفات مهم غلات به‌ویژه گندم است که در انتقال برخی از ویروس‌­های بیماری­‌زای گیاهی نقش مهمی دارد. هدف تحقیق حاضر، بررسی تأثیر زیرکشندگی حشره­‌کش پی­‌متروزین (Pymetrozine Aria®) بر فراسنجه‌­های جدول زندگی و فعالیت آنزیم‌های آلفا و بتا استراز شته سبز گندم با استفاده از دو سوبسترای آلفا-نفتیل استات و بتا-نفتیل استات در اتاقک رشد با شرایط دمایی 2±25 درجه‌‏ی سلسیوس، رطوبت نسبی 5±60 درصد و دوره‌‏ی نوری 16 ساعت روشنایی و 8 ساعت تاریکی بود. مقدار غلظت کشنده 50 (LC50) و 30 (LC30) درصد حشره­‌کش­ مورد مطالعه روی شته‌­های ماده بالغ S. graminum، به‌­ترتیب 68/84 و 36/39 میلی­‌گرم ماده موثره بر لیتر به دست آمد. نتایج آزمایش تأثیر زیرکشندگی (LC30) این حشره‌­کش نشان داد که طول دوره نشو و نمای پورگی در تیمار حشره­‌کشی­ (33/5 روز) طولانی‌­تر از شاهد (33/6 روز) بود، اما میزان پوره­‌زایی روی تیمار حشره‌­کشی (06/18 پوره/به ازای هر شته کامل) به طور معنی‌­داری کمتر از شاهد (14/38 پوره/ به ازای هر شته کامل) بود. هم­‌چنین، حشره­‌کش مورد مطالعه به­‌طور معنی­‌داری باعث کاهش ویژگی­‌های دموگرافی شته سبز گندم شدند. مقدار نرخ ذاتی افزایش جمعیت (r) شته‌­ها در شاهد و تیمار حشره‌­کشی به‌­ترتیب 394/0 و 280/0 بر روز بود. در این بررسی، میزان فعالیت آنزیم­‌های استراز، براساس میکرومول بر دقیقه بر میلی­‌گرم پروتئین شته‌­های تیمار شده تفاوت معنی­‌داری با شاهد نداشت. نتایج نشان داد که حشره‌­کش­ پی‌متروزین اثر کشندگی و زیرکشندگی قابل توجهی برای شته سبز گندم دارد و می­‌تواند پس از طی مطالعات تکمیلی مزرعه­‌ای، در استفاده بهینه از آفت­‌کش­­‌ها و طراحی برنامه‌­های مدیریت تلفیقی آفت مذکور مورد توجه واقع گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Toxicity and sublethal effects of Pymetrozine insecticide on population growth parameters and detoxifying enzymes activity of Schizaphis graminum Rondani (Hemiptera: Aphididae)

نویسندگان [English]

  • H. Rafiee Dastjerdi 1
  • Z. Abedi 2
  • A. Golizadeh 3
  • A. Habibi-Yangjeh 4
  • S. Feizpoor 5
1 Professor, Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
2 Ph.D. Graduate Student, Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
3 Professor, Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
4 Professor, Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
5 Ph.D. Student of Physical Chemistry, Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Background and Objectives
The Greenbug, Schizaphis graminum Rondani (Hemiptera: Aphididae), is one of the most important pests in grain, especially wheat, and is an important cause for transferring a number of pathogenic viruses in plants. The purpose of this research was to evaluate the lethal and sublethal effects of Pymetrozine insecticide on life history parameters and α-esterase and β-esterase enzymes activity of S. graminum. Detoxifying enzymes play a vital role in the detoxification of chemical compounds in many living organisms. These enzymes increase the resistance of insects to chemical pesticides by the catalysis of these compounds in their body.
Materials and Methods
The S. graminum was reared on the wheat host in a growth chamber set at 25 ± 2 °C, 60 ± 5 % RH, plus 16: 8 (L: D) hour photoperiods. Daily observations and records were made for the development period and survival rate. The crude data were analyzed based on age-stage and two-sex life table analysis. TWO SEX-MSChart was used to evaluate the raw data based on the age-stage and two-sex life table. In addition, alpha-naphthyl (α-NA) and beta-naphthyl (β-NA) acetates were employed as substrates for the α-esterase and β-esterase activity, respectively. Esterase enzymes of tested treatments were measured using a microplate reader.
Results
Exposing adults to bioassays indicated that the lethal concentration (LC50) of insecticide treatment in S. graminum adults was 84.68 mg a.i./L. The present study demonstrated that Pymetrozine insecticide showed more acute toxicity on adult stages of S. graminum. Moreover, exposure of adults to sublethal concentrations (LC30) negatively affected the development and reproductive characteristics and demographic factors of the Greenbug. In specific, results for sublethal experiments showed a significant increase in the development time of the pest on the insecticide treatment compared with the control. On the contrary, the lowest fecundity in pests was observed on Pymetrozine insecticide. In addition, the tested insecticide significantly reduced the population growth parameters of S. graminum, which can be identified using detoxifying enzymes as biochemical markers of the pest. Estimation values for the intrinsic rate of increase (r) in the control and insecticide treatment were 0.394 and 0.280 per day, respectively. Furthermore, the activity of alpha and beta esterase was not significantly different between control and insecticide treatment.
Discussion
The results revealed that Pymetrozine insecticide exerts high lethal and sublethal effects on S. graminum, and thus, it is recommended to be applied in an integrated pest management program (IPM). Semifield and field studies are needed to obtain more applicable results using insecticides.

کلیدواژه‌ها [English]

  • toxicity
  • life table
  • biochemical characteristics
  • esterase
Abedi, Z., Saber, M., Gharekhani, G. H., Mehrvar, A., & Kamita, G. (2014). Lethal and sublethal effects of azadirachtin and cypermethrin on Habrobracon hebetor (Hymenoptera: Braconidae). Journal of Economic Entomology, 107, 638-645. https://doi.org/10.1603/EC13227
Aeinehchi, P., Naseri, B., Rafiee Dastjerdi, H., Nouri-Ganbalani, G., & Golizadeh, A. (2019). Lethal and sublethal effects of thiacloprid on Schizaphis graminum (Rondani) (Hemiptera: Aphididae) and its predator Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae). Toxin Reviews, https://doi.org/10.1080/15569543.2019.1677719
Alan, J. D., & Daniel, R. E. (1982). Life table evaluation of chronic exposure of Eurytemora affinis (Copepoda) to kepone. Marine Biology, 66, 179-184.  https://doi.org/10.1007/BF00397191
Banks, J. E., & Stark, J. D. (2004). Aphid response to vegetation diversity and insecticide applications. Agriculture, Ecosystems & Environment, 103, 595-599. https://digitalcommons.tacoma.uw.edu/ias_pub/91
Barati, R., Golmohammadi, Gh., & Mansouri, R. (2016). Side effects of some herbal insecticides on Bemisia tabaci and Encarsia formosa. Biocontrol in Plant Protection, 45, 3.
Blackman, R. L., & Eastop, V. F. (2006). Aphids on the world’s herbaceous plants and shrubs. John Wiley.
Chen, X., Ma, K., Li, F., Lianq, P., Liu, Y., Guo, T., Song, D., Desneux, N., & Gao, X. (2016). Sublethal and transgenerational effects of sulfoxafor on the biological traits of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae). Ecotoxicology, 25, 1841-1848. https://doi.org/10.1007/s10646-016-1732-9
Chi, H. (2020). TWOSEX-MSChart: A computer program for the age-stage, two-sex life table analysis. https://140.120.197.173/ecology/prod02.htm
Chi, H., & Yang, T. (2003). Two-sex life table and predation rate of Propylaea japonica Thunberg (Coleoptera: Coccinellidae) fed on Myzus persicae (Sulzer) (Homoptera: Aphididae). Environmental Entomology, 32, 327-333. https://doi.org/10.1603/0046-225X-32.2.327
Desneux, N., Denoyelle, R., & Kaiser, L. (2006). A multi- step bioassay to assess the effect of the deltamethrin on the parasitic wasps, Aphidius ervi. Chemosphere, 62, 1697-1706. https://doi.org/10.1016/j.chemosphere.2006.04.082
Dixon, A. F. G. (1987). Cereal aphids as an applied problem. Agricultural Zoology Reviews, 2, 1-57.
Fattah-Alhoseini, S., Allahyari, H., Azemayesh-Fard, P., & Heydari, S. (2011). Effects of host plant on development and reproduction of green wheat Aphid Schizaphis graminum (Rondani) (Hem.: Aphididae). Iranian Journal of Plant Protection Science, 4(2), 233-242.
Fekri, M. S., Samih, A. M., Shahouzahi, B., Imani, S., & Zarabi, M. (2015). Effect of plant extracts of Fumaria parviflora, Teucrium polium and insecticide pymetrozine on mortality and activity of esterase enzyme of Bemisia tabaci (Genn.) on resistant and susceptible variety. Iranian Journal of Plant Protection Science, 45(2), 357-369. https://www.sid.ir/en/journal/ViewPaper.aspx?id=463283
Galvan, T. L., Koch, R. L., & Hutchison, W. D. (2005). Effects of spinosad and indoxacarb on survival, development, and reproduction of the multicolored asian lady beetle (Coleoptera: Coccinellidae). Biological Control, 34, 108-114. https://doi.org/10.1016/j.biocontrol.2005.04.005
Guedes, R., Smagghe, G., Stark, J., & Desneux, N. (2016). Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. Annual Review of Entomology, 61, 43-62. https://doi.org/10.1146/annurev-ento-010715-023646
Hallaji Sani, M. F., Naseri, B., Rafiee-Dastjerdi, H., Aghajanzadeh, S. & Ghadamyari, M. (2019). Effects of three conventional insecticides on life table parameters and detoxifying enzymes activity of Pulvinaria aurantii Cockerell (Hemiptera: Coccidae). Toxin Reviews, 40(4), 1318-1326. https://doi.org/10.1080/15569543.2019.1693401
Harvey, T. L. & Hackerott, H. L. (1969). Recognition of the greenbug biotype injurious to sorghum. Journal of Economic Entomology, 62, 776-779. https://doi.org/10.1093/jee/62.4.776
Hayes, J. D., & Pulford, D. J. (1995). The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Biochemistry Molocular Biology, 30, 445-600. https://doi.org/ 10.3109/10409239509083491.
Hemingway, J., & Karunatne, S. H. P. (1998). Mosquito carboxylesterases: A review of the molecularbiology and biochemistry of a major insecticide resistance mechanism. Medical and Veterinary Entomology, 12, 1-12. https://doi.org/10.1046/j.1365-2915.1998.00082.x Iran nezhad, H. (2005). Cereal crops. Tehran University Press.
Kammenga, J., & Laskowski, R. (2000). Demography in Ecotoxicology. John Wiley and Sons.
Khanjani, M. (2005). Field crop pests in Iran (Insects and Mites). Bu-Ali Sina University.
Khodabandeh, N. (2000). The Cultivation of Crops. Tehran University Press.
Michels, G. J. & Behle, R. W. (1989). Influence of temperature on reproduction, development and intrinsic rate of increase of Russian wheat aphid, greenbug, and bird cherry-oat aphid (Homoptera:Aphididae). Journal of Economic Entomology, 82, 439-444. https://doi.org/10.1093/jee/82.2.439
Ohnesorg, W. J., Johnson, K., & O’NEAL, M. (2009). Impact of reduced-risk insecticides on soybean aphid and associated natural enemies. Journal of Economic Entomology, 102(5), 1816-1826. https://doi.org/10.1603/029.102.0512
Olfati Somar, R., Zamani, A. A., & Alizadeh, M., (2019). Joint action toxicity of imidacloprid and pymetrozine on the melon aphid, Aphis gossypii. Crop Protection, 124, 104850. https://doi.org/10.1016/j.cropro.2019.104850
Papp, M., & Mesterhazy, A. (1993). Resistance to bird cherry oat-aphid Rhopalosiphum padi (L.) in winter wheat varieties. Euphytica, 67(1), 49-57. https://doi.org/10.1007/BF00022724
Robertson, J. L., Russell, R. M., Preisler, H. K., & Savin, N. E. (2007). Bioassay with arthropods. CRC Press, London, United Kingdom.
Saber, M., Hejazi, M. J., Kamali, K., & Moharramipour, S. (2005). Lethal and sublethal effects of fenitrothion and deltamethrin residues on egg parasitoid Trissolcus grandis (Hymenoptera: Scelionidae). Journal of Economic Entomology, 98(1), 35-40. https://doi.org/10.1603/0022-0493-98.1.35
Sadeghi, G. R., & Pourmirza, A. A. (2008). Study on the mortality and repellency effects of three insecticides on Aphelinus mali (Haldeman) (Hym.: Aphelinidae). Journal of Plant Protection, 22(2), 27-33. https://www.sid.ir/en/journal/ViewPaper.aspx?id=141867
Samara, R., Lowery, T. D., Stobbs, L. W., Vickers, P. M., & Bittner, L. A. (2021). Assessment of the effects of novel insecticides on green peach aphid (Myzus persicae) feeding and transmission of Turnip mosaic virus (TuMV). Pest Managment Science, 77(3), 1482-1491.  https://doi.org/10.1002/ps.6169
SAS Institute. (2002). The SAS system for Windows. SAS Institute, Cary, NC.
Stark, J. D., & Banks, J. E. (2003). Population-level effects of pesticides and other toxicant on arthropods. Annals of Review Entomology, 48, 505-519. https://doi.org/10.1146/annurev.ento.48.091801.112621
Stark, J. D., Sugayama, R. I., & Kovaleski, A. (2007). Why demographic and modeling approaches should be adopted for estimating the effects of pesticides on biocontrol agents. Biocontrol, 52, 365-374. https://doi.org/10.1007/s10526-006-9040-6
Talebi Jahromi, K. (2007). Pesticides Toxicology. University of Tehran.
Taleh, M., Rafiee-Dastjerdi, H., Naseri, B., Ebadollahi, A., Sheikhi Garjan, A., & Talebi Jahromi, Kh. (2021). Toxicity and biochemical effects of emamectin benzoate against Tuta absoluta (Meyrick) alone and in combination with some conventional insecticides. Physiological Entomology, 46, 210-217. https://doi.org/10.1111/phen.12360
Tiwari, S., Mann, R. S., Rogers, M. E., & Stelinski, L. L. (2011). Insecticide resistance in field populations of asian citrus psyllid in Florida. Pest Management Science, 67, 1258-1268. https://doi.org/10.1002/ps.2181
Vakhide, N., & Safavi, S. A. (2014). Lethal and sublethal effects of direct exposure to acetamiprid on reproduction and survival of the greenbug, Schizaphis graminum (Hemiptera: Aphididae). Archives of Phytopathology and Plant Protection, 47(3), 339-348. https://doi.org/10.1080/03235408.2013.809898
van Asperen, K. (1962). A study of housefly esterases by means of a sensitive colorimetric method. Journal of Insect Physiology, 8, 401-416. https://doi.org/10.1016/0022-1910(62)90074-4
Wilde, G. E., Shufran, R. A., Kindler, S. D., Brooks, H. L., & Sloderbeck, P. E. (2001). Distribution and abundance of insecticide resistant greenbugs (Homoptera: Aphididae) and validation of a bioassay to assess resistance. Journal of Economic Entomology, 94(2), 547-551. https://doi.org/10.1603/0022-0493-94.2.547
Wu, G., Jiang, S., & Miyata, T. (2004). Effects of synergists on toxicity of six insecticides on parasitoid Diaeretiella rapae (Hymenoptera: Aphidiidae). Journal of Economic Entomology, 97, 2057-2066. https://doi.org/10.1603/0022-0493-97.6.2057
Yin, X. H., Wu, Q. J., Li, X. F., Zhang, Y. J., & Xu, B. Y. (2009). Demographic changes in multigeneration Plutella xylostella (Lepidoptera: Plutellidae) after exposure to sublethal concentrations of spinosad. Journal of Economic Entomology, 102(1), 357-365. https://doi.org/10.1603/029.102.0146
 © 2022 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/