جداسازی و شناسایی باکتری‌های اندوفیت گیاه دارویی مرزه خوزستانی (Satureja khuzestanica) و ارزیابی متابولیت‌های ثانویه آن‌ها در فعالیت ضدمیکروبی علیه باکتری‌های بیماری‌زای گیاهی

نوع مقاله : علمی پژوهشی-فارسی

نویسندگان

1 دانشجوی دکتری بیماری شناسی گیاهی دانشکده کشاورزی دانشگاه بوعلی سینا همدان، همدان، ایران

2 استاد گروه گیاه‌پزشکی، دانشکده کشاورزی دانشگاه بوعلی سینا همدان، همدان، ایران

چکیده

مرزه خوزستانی (Satureja khuzestanica) گیاه معطری است که به دلیل محتوای متابولیت‌های ثانویه فعال زیستی که در طب سنتی قابل استفاده هستند، توجه بسیاری از محققین را به خود جلب کرده‌است. با این حال، اطلاعات در مورد اندوفیت‌های باکتریایی مرتبط با مرزه خوزستانی (S. khuzestanica) محدود است. در مطالعه حاضر، 17 اندوفیت باکتریایی از گیاه دارویی S. khuzestanica جداسازی شد. مطالعات آنتاگونیستی این جدایه‌ها برابر سه باکتری بیماری‌زای گیاه،Ralstonia solanacearum ،Pectobacterium carotovorum subsp. carotovora  و Clavibacter insidiosus در شرایط آزمایشگاهی روی محیط کشت Tryptic Soy Broth به روش کشت سه نقطه‌ای بر اساس آزمایش فاکتوریل در قالب طرح کامل تصادفی در سه تکرار انجام شد. داده‌های حاصل با استفاده از نرم‌افزار SAS تجزیه و تحلیل شدند و مقایسه میانگین‌ها از طریق آزمون چند دامنه‌ای دانکن انجام و نماینده‌ها انتخاب شدند. اندوفیت‌های باکتریایی با تعیین توالی ژن 16S rRNA شناسایی شدند و به سه جنس Bacillus, Pseudomonas و Streptomyces تعلق داشتند. متابولیت‌های این باکتری‌ها به وسیله اتیل استات استخراج و آنالیز گاز کروماتوگرافی- طیف‌سنجی جرمی عصاره (GC-MS) با روش‌های استاندارد انجام شد. نتایج آزمون حداقل غلظت مهاری (MIC) با استفاده از روش میکرودایلوشن، نشان دهنده فعالیت ضد میکروبی با غلظت مهار قابل توجهی از 5/2-312/0 میلی‌گرم در میلی‌لیتر بودند. یافته‌های ما بینش جدیدی را در مورد فعالیت‌های ضد میکروبی اندوفیت‌های باکتریایی از S. khuzestanica ارائه می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Isolation and identification of endophytic bacteria from Satureja Khuzestanica and evaluation of its secondary metabolites for antimicrobial activity against plant pathogenic bacteria

نویسندگان [English]

  • M. Omidi Nasab 1
  • G. Khodakaramian 2
1 PhD candidate Plant Pathology, Faculty of Agriculture, Bu Ali Sina University, Hamadan, Hamadan, Iran
2 Professor of Department of Plant Pathology, Faculty of Agriculture, Bu Ali Sina University, Hamadan, Hamadan, Iran
چکیده [English]

Background and Objectives
In many parts of the world, medicinal plants have been used as an alternative medicine to promote human health and longevity since ancient times. Microbes residing within plant tissues are known as endophytes. The compounds produced by these microbes have the potential to be employed in modern medicine, agriculture, and other industries. Endophytic bacteria isolated from medicinal plants are valuable sources of novel bioactive compounds with diverse activities, including antimicrobial, anticancer, and antiviral properties. This study aimed to isolate, identify, and screen endophyte bacteria with antimicrobial activity against plant pathogenic bacteria. Aromatic plants such as Satureja khuzestanica are utilized in traditional medicine due to their secondary metabolites, but data regarding its naturally occurring bacterial endophytes is limited.
Materials and Methods
In the current study, 17 strains of bacterial endophytes were isolated in a Tryptic Soy Agar medium from the medicinal plant Satureja khuzestanica. Based on sequencing the 16S rRNA encoding gene, researchers isolated bacterial strains from the Bacillus, Streptomyces, and Pseudomonas genera with the highest activity against plant pathogenic bacteria. Under standard conditions, these endophytic bacteria’s bioactive secondary metabolites were extracted with ethyl acetate and analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). The mass spectra of the compounds were compared to the National Institute of Standards and Technology (NIST) library’s database. Moreover, microbroth dilution techniques were used to determine the minimum inhibitory concentration (MIC) values for five different bacteria species.
Results
The GC-MS analysis revealed the presence of a number of compounds, including dibutyl phthalate (DBP), eicosane, octadecanoic acid, hexadecanoic acid, and hexadecane 1,4- dicyclohexylbutane. Four of the selected bacterial endophytes exhibited antimicrobial activity against three plant pathogens: Ralstonia solanacearum, Pectobacterium carotovorum subsp., carotovorum, and Clavibacter insidiosus. Data analysis revealed significant differences in antimicrobial activity, with the minimum inhibitor concentration ranging from 0.312 mg/ml to 2. 5 mg/ml. Furthermore, we identified bioactive secondary metabolites with reported biological activities in antimicrobial, anti-inflammatory, and antioxidant properties with biotechnological applications in medicine, agriculture, and other industries based on an endophytic crude extract data analysis.
Conclusion
Our findings shed new light on the antimicrobial properties of naturally occurring bacterial endophytes in S. khuzestanica.
 

کلیدواژه‌ها [English]

  • antioxidant
  • crude extract
  • biological activity
  • pathogenic agents
Ahsan, T., Chen, J., Zhao, X., Irfan, M., & Wu, Y. (2017). Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG-3 strain KX852461 to control target spot disease in tobacco leaf. AMB Express, 7 (1):54. https://doi: 10.1186/s13568-017-0351-z.
Akerele, O., Heywood, V., & Synge, H. (1991). Conservation of Medicinal Plants. Cambridge University Press Ltd, Cambridge. https://doi.org/10.1017/CBO9780511753312.
Alvin, A., Miller, K. I., & Neilan, B. A. (2014). Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiological Research, 169(7-8), 483–495. https://doi.org/10.1016/j.micres.2013.12.009
Andrews, J. M. (2001). Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy, 48(1), 5–16. https://doi.org/10.1093/jac/48.suppl1.5
Awla, H. K., Kadir, J., Othman, R., Rashid, T. S., & Wong, M.Y. (2016). Bioactive compounds produced by Streptomyces sp. isolate UPMRS4 and antifungal activity against Pyricularia oryzae. American journal of plant sciences, 7(7), 1077. https://doi:10.4236/AJPS.2016.77103
Bajguz, A. (2007). Metabolism of brassinosteroids in plants. Plant Physiology and Biochemistry, 45(2), 95–107. https://doi.org/10.1016/j.plaphy.2007.01.002
Bhardwaj, A., Sharma, D., Jadon, N. & Agrawal, P. K. (2015). Antimicrobial and phytochemical screening of endophytic fungi isolated from spikes of Pinus roxburghii. Archive of Journal of Clinical Microbiology, 53(6), 1-9. ISSN 1989-8436
Cai, Y. Z., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74, 2157–2184. https://doi: 10.1016/j.lfs.2003.09.047
Cantino, P. D., Harley, R. M., & Wagstaff, S. J. (1992). Genera of Labiateae: Status and classification. In Harley, R.M & Reynolds, T (Eds). Advances in Labiatae science (511-522). Kew Royal Botanical Gardens, Richmond.
Chen, G., Wang, G. Y. S., Li, X., Waters, B., & Davies, J. (2000). Enhanced production of microbial metabolites in the presence of dimethyl sulfoxide. The Journal of Antibiotics 53(10), 1145-1153, https://doi: 10.7164/antibiotics.53.1145.
Elander, R. P. (2003). Industrial production of betalactam antibiotics. Applied Microbiology and Biotechnology, 61, 385–392. https://doi.org/10.1007/s00253-003-1274-y
Endo, A. (2010). A historical perspective on the discovery of statins. Proceedings of the Japan Academy, Ser. B, Physical and Biological Sciences, 86(5), 484–493.https://doi: 10.2183/pjab.86.484
Geddes, C. C., Nieves, I. U., & Ingram, L. O. (2011). Advances in ethanol production. Current Opinion in Biotechnology, 22(3), 312–319. https://doi.org/10.1016/j.copbio.2011.04.012
Jalaluldeen, A. M., Sijam, K., Othman, R., & Ahmad, Z. A. M. (2015). Growth characteristics and production of secondary metabolites from selected Streptomyces species isolated from the Rhizosphere of Chili Plant. International Journal of Engineering, Science and Technology, 4(1), 1–8. ISSN: 2319-7463.
Jamzad, Z. (1996). Satureja rechingeri (Labiatae). a new species from Iran. Annalen des Nutwhistoiischen Museums in Wien 98 B Supplement-90 Jahre K.H. Rechinger. 75–77. https://www.zobodat.at/pdf/ANNA_98BS_0075-0077.pdf
Kamber, T., Lansdell, T. A., Stockwell, V. O., Ishimaru, C. A., Smits, T. H. M., & Duffy, B. (2012). Characterization of the biosynthetic operon for the antibacterial peptide herbicolin in Pantoea vagans biocontrol strain C9-1 and incidence in Pantoea species. Applied and Environmental Microbiology Journal, 78(12), 4412–4419. https://doi: 10.1128/AEM.07351-11
Kavita, R., & Mohiden, A. U. (2017). Identification of Bioactive Components and Its Biological Activities of Abelmoschas moschatus Flower Extrtact-A Gc-Ms Study. Conference Proceedings. @inproceedings{Kavitha2017IdentificationOB.
Khattab, A. I., Babiker, E. H., & Saeed, H. A. (2016). Streptomyces: isolation, optimization of culture conditions and extraction of secondary metabolites. International Journal of Current Pharmaceutical Research, 5, 27–32. https://doi:10.3329/ICPJ.V5I3.26695.
Kirk, O., Borchert, T. V., & Fuglsang, C. C. (2002). Industrial enzyme applications. Current Opinion in Biotechnology Journal, 13(4), 345–351. https://doi.org/10.1016/S0958-1669(02)00328-2.
Kitov, P. I., Mulvey, G. L., Griener, T. P., Lipinski, T., Solomon, D., & Paszkiewicz, E. (2008). In vivo supra molecular templating enhances the activity of multivalent ligands: a potential therapeutic against the Escherichia coli O157 AB5 toxins. Proceedings of the National Academy of Sciences USA 105(44), 16837–16842. https://doi.org/10.1073/pnas.0804919105.
Maroyi, A. (2018). Dicoma anomala sond.: a review of its botany, ethnomedicine, phytochemistry and pharmacology. Asian Journal of Pharmaceutical and Clinical Research, 11(6), 70–77. https://doi.org/10.22159/ajpcr.2018.v11i6.25538.
Merino, S. T., & Cherry, J. (2007). Progress and challenges in enzyme development for biomass utilization. Advances in Biochemical Engineering/Biotechnology, 108, 95–120. https://doi.org/10.1007/10_2007_066.
Mitsuhashi, S. (2014). Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides. Current Opinion in Biotechnology Journal, 26, 38–44. https://doi.org/10.1016/j.copbio.2013.08.020.
Mozaffarian, V. (2005).  Trees and shrubs of Iran. Farhang Mosavar Publ., Tehran, Iran. (in farsi) . ISBN-13 ‏: ‎978-9648637038.
Muzzamal, H. (2012). Isolation, Identification and screening of endophytic bacteria antagonistic to biofilm formers. Pakistan Journal of Zoology, 44(1), 249–257. https://www.researchgate.net/publication/286164875.
Narasaiah, B. C., Leelavathi, V., Sudhakar, G., Mariyadasu, P., Swapna, G. & Manne, A. K. (2014). Isolation and structural confirmation of bioactive compounds produced by the strain Streptomyces albus CN-4. IOSR Journal of Pharmacy and Biological Sciences, 9, 49–54.
Nair, D. N., & Padmavathy, S. (2014). Impact of endophytic microorganisms on plants, environment and humans. The Scientific World Journal, 250-693.  https://doi: 10.1155/2014/250693.
Olano, C., Mendaz, C., & Salar, J. A. (2009). Antitumour compounds from marine actinomycetes, marine drugs. Marine Drugs, 7(2), 210–248. https://doi: 10.3390/md7020210
Petrova, D. H. & Shishkov, S. A. (2006). Novel thermostable serine collagenase from Thermoactinomyces sp. 21E: purification and some properties. Journal Basic Microbiology, 46(4), 275-85. https://doi: 10.1002/jobm.200510063.
Pissuwan, D., Valenzuela, S. M., & Cortie, M. B. (2006). Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends in Biotechnology, 24(2), 62–67. https://doi.org/10.1016/j.tibtech.2005.12.004.
Qin, S., Miao, Q., Feng, W., Wang, Y., Zhu, X., & Xing, K. (2015). Biodiversity and plant growth promoting traits of culturable endophytic actinobacteria associated with Jatropha curcas L. growing in Panxi dry-hot valley soil. Applied Soil Ecology, 93, 47–55. https://doi: 10.1016/j.apsoil.2015.04.004.
Rechinger, K. H. (1982). Satureja. Flora Iranica: Flora Desiranischen Hoclandes and der Umrahmenden Gebirge. Akademische Druku Verlags Antalt Graz, Austria, 150, 495–504.
Rosa, J. P., Tibúrcio, S. R., Marques, J. M., Seldin, L. & Coelho, R. R. (2016). Streptomyces lunalinharesii 235 prevents the formation of a sulfate-reducing bacterial biofilm. Brazilian Journal of Microbiology, 47(3), 603-609. https:// doi: 10.1016/j.bjm.2016.04.013.
Ryan, R. P. K., Germaine, A., Franks, D. J., Ryan, & Dowling, D. N. (2008). Bacterial endophytes: recent developments and applications. FEMS Microbiology Letters, 278(1), 1–9. https://doi:10.1111/J.1574-6968.2007.00918.X.
Sathiyanarayanan, G., Gandhmathi, R., Sabarathnan, B., SeghalKiran, G., & Selvin J. (2014). Optimization and production of pyrrolidon antimicrobial agent from marine sponge-associated Streptomyces sp. Bioprocess and Biosystems Engineering, 37(3), 561-573. https://doi: 10.1007/s00449-013-1023-2.
Schaad, N.W., jones, J.B., Chun, W. (2001). Laberatory Guide For Identification Of Plant Pathogenic Bacteria. American Phytopathological Society. paul, MN. pp. 398.
Shaligram, N. S., & Singhal, R. S. (2010). Surfactin- a review on biosynthesis, fermentation, purification and applications. Food Technology and Biotechnology, 48(2), 119–134. ISSN 1330-9862.
Shetty, K., & Labbe, R. G. (1998). Food-borne pathogens, health and role of dietary phytochemicals. Asia Pacific Journal of Clinical Nutrition, 7 (3/4), 270-276. PMID: 24393682.
Silic, C. (1979). Monografija rodova Satureja L., Calamintha Miller, Micromeria Bentham, Acinos Miller i Clinopodium L. u flori Jugoslavije. Zemaljski muzej BiH, Sarajevo. (in Serbian).
Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology, 56(4), 845-57. https://doi: 10.1111/j.1365-2958.2005. 04587.x
Subbulakshmi, G. K, Thalavaipandian, A., Bagyalakshmi, R. V., & Rajendran, A. (2012). Bioactive endophytic fungal isolates of Biota orientalis (L) Endl., Pinus excelsaWall. and Thuja occidentalis L. International Journal of Advanced Life Sciences, 4,9–15. ISSN: 2277-758X
Sunkar, S., & Nachiyar, C. V. (2012). Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pacific Journal of Tropical Biomedicine, 2(12), 953–959. https://doi: 10.1016/S2221-1691(13)60006-4
Tan, R. X., & Zou, W. X. (2001). Endophytes: a rich source of functional metabolites. Natural product reports18(4), 448-459. https://doi: 10.1039/B100918O.
Valli, S., Suvathi, S. S., Aysha, O., Nirmala, P., Vinoth, K. P. & Reena, A. (2012). Antimicrobial potential of Actinomycetes species isolated from marine environment. Asian Pacific Journal of Tropical Biomedicine, 2(6), 469-73. https://doi: 10.1016/S2221-1691(12)60078-1.
Waldron, C., Matsushima, P., Rosteck, P. R., Broughton, M. C., Turner J. & Madduri, K. (2001). Cloning and analysis of the spinosad biosynthetic gene cluster of Saccharopolyspora spinosa. Chemistry & Biology, 8, 487–499. https://doi.org/10.1016/S1074-5521(01)00029-1
Wendisch, V. F. (2014). Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development. Current Opinion in Biotechnology, 30, 51–58. https://doi.org/10.1016/j.copbio.2014.05.004.
Yeates, C. Gillings, M. R., Davison, A. D., Altavilla, N. & Veal, D. A. (1997). PCR amplification of crude microbial DNA extracted from soil. Letters in Applied Microbiology, 25(4), 303–307. https://doi: 10.1046/j.1472-765X.1997.00232.x.
Yoon, Y. J., Kim, E. S., Hwang, Y. S. & Choi, C. Y. (2004). Avermectin: biochemical and molecular basis of its biosynthesis and regulation. Applied Microbiology and Biotechnology, 63, 626–634. https://doi: 10.1007/s00253-003-1491-4
 © 2022 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/