). Effect of various cereal hosts on population growth traits of the mediterranean flour moth, Ephestia kuehniella Zeller Lepidoptera: Pyralidae)

Document Type : Research paper-Persian

Authors

1 M. Sc. Graduate Student, Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

2 Professor, Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

3 Associate Professor, Department of Plant Sciences, Moghan of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

Abstract

Background and Objectives
The Mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae), is one of the world’s most significant pests of stored products. E. kuehniella eggs and larvae are widely used in rearing parasitoids and predators for biological control programs. The purpose of this study was to look at the effects of various cereal hosts and cultivars, including wheat (Meraj, Paya and Aftab cultivars), barley (Oxin, Faraz and Fardan cultivars), rice (Hashemi cultivar), maize (704 Hybrid), sorghum (Spidfit cultivar), rye (Danko cultivar) and millet (Morvaridi cultivar) on life history variables, biological characteristics and population growth parameters of E. kuehniella. In addition, biochemical (protein and starch contents) and physical (humidity and hardiness index) characteristics of the cereal hosts were evaluated to understand any possible correlation between important demographic parameters and biochemical and biological features of the cereal hosts.
Materials and Methods
The E. kuehniella larvae were reared in a growth chamber at 26 ± 2°C, 60 ± 5% RH, and a photoperiod of 14:10 (L:D) hours on each cereal host. The duration of each stage, developmental period, and survival rate were observed and recorded daily. TWOSEX-MS Chart was used to analyze the life table parameters of E. kuehniella. The biochemical metabolites of cereals were measured using Bradford’s (1976) and Bernfeld’s (1955) methods.
Results
Our findings showed that various kinds of cereal significantly impact the life history and demographical parameters of E. kuehniella. The millet host had the longest development time (66.57 days), while the rice and maize hosts had the shortest on Paya and Aftab cultivars. Total fecundity (mean number of eggs laid during the reproductive period) of E. kuehniella varied significantly depending on the hosts tested. The lowest fecundity values were observed on the millet host (49.10 ± 2.92 eggs), while the highest was on the maize host (136.18 ± 7.36 eggs). The maize host had the highest intrinsic rate of increase (0.067 day-1), and the millet host had the lowest (0.033 day-1) host. Significant differences in physical characteristics and biochemical metabolites were observed between the various hosts in this study. Furthermore, significant positive or negative associations were discovered between different hosts’ life history variables and humidity percentage, hardiness index, protein, and starch contents.
Discussion
According to the findings, sorghum (Spidfit cultivar) and millet (Morvaridi cultivar) were the least suitable (relatively resistant) hosts for E. kuehniella growth. In contrast, wheat (Meraj cultivar) and maize, on the other hand, were the most suitable hosts for the mass rearing of E. kuehniella.

Keywords


AACC (1996). Approved methods of the American association of cereal chemists.10th, American association of cereal chemists, Saint Paul, Minnesota.
Abdi, A., Naseri, B., & Fathi, A.A. (2014). Nutritional indices and digestive enzymatic activity of Ephestia kuehniella (Lepidoptera: Pyralidae): response to flour of nine wheat cultivars. Journal of Entomological Society of Iran, 33, 29-41.
Alami, S., Naseri, B., Golizadeh, A. & Razmjou, J. (2014). Age-stage, two-sex life table of the tomato looper, Chrysodeixis chalcites (Lepidoptera: Noctuidae), on different bean cultivars. Arthropod-Plant Interactions, 8, 475-484. https://doi.org/10.1007/s11829-014-9330-3
Bernfeld, P. (1955). Amylase, α and β. Methods in Enzymology, 1, 149-154. http://dx.doi.org/10.1016/0076-6879(55)01021-5
Bidar, F., Naseri, B., & Razmjou, J. (2016). Barley cultivars affecting nutritional perfomnce and digestive enzymatic activities of Ephestia kuehniella Zeller (Pyralidae). Journal of the Lepidopterists’ Society, 70(1), 1-8.
Blumel, S. (1996). Effect of selected mass-rearing parameters on O. majusculus (Reuter) and O. laevigatus (Fieber). Bulletin OILB-SROP, 19, 15-18.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Brower, J.H. & Press, J.W. (1990). Interaction of Bracon hebetor (Hymenoptera: Braconidae) and Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) in suppressing stored product moth population in small inshell peanut storages. Journal of Economic Entomology, 83, 1096-1101.
Carey, J.R. (2001). Insect biodemography. Annual Review of Entomology, 46, 79-110.
Chen, Y., Ni, X., & Buntin, G. D. (2009). Physiological, nutritional, and biochemical bases of corn resistance to foliage-feeding fall armyworm. Journal of Chemical Ecology, 35, 297-306. https://doi.org/ 10.1007/s10886-009-9600-1
Chi, H. (2020). TWOSEX-MSChart: A computer program for the age-stage, two-sex life table analysis. https://140.120.197.173/ecology/prod02.htm
Corbet, S.A. (1973). Oviposition pheromone in larval mandibular glands of Ephestia kuehniella. Nature, 243, 537-538.
Coskun, M., Ozalp, P., Sulanc, M., & Emre, I. (2005). Effects of various diets on the oviposition and sex ratio of Pimpla turionellae L. International Journal of Agriculture and Biology, 7, 129-132. https://doi.org/1560–8530/2005/07–1–129–132
Crutti, F., Bigler, F., Eden, G. & Bosshrt, S. (1992). Optimal larval density and quality control aspects in mass rearing of Mediterranean flour moth, Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae). Journal of Applied Entomology, 114, 353-361. https://doi.org/10.1111/j.1439-0418.1992.tb01139.x
Darwish, E., El-Shazly, M. & El-Sherif, H.  (2003). The choice of probing site by Bracon hebetor Say (Hymenoptera: braconidae) foraging for Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Journal of Stored Products Research, 39, 265-276. https://doi.org/10.1016/S0022-474X(02)00023-1
Du, L., Ge, F., Zhu, S. & Parajulee, M.N. (2004). Effect of cotton cultivar on development and reproduction of Aphis gossypii (Homoptera: Aphididae) and its predator Propylaea japonica (Coleoptera: Coccinellidae). Journal of Economic Entomology, 97, 1278-1283. https://doi.org/10.1093/jee/97.4.1278
Eliopoulos, P.A. & Stathas, G.J. (2005). Effects of temperature, host instar, and adult feeding on progeny production by the endoparasitoid Venturia canescens (Gravenhorst) (Hymenoptera: Ichneumonidae). Environmental Entomology, 34(1), 14-21.  https://doi.org/10.1603/0046-225X-34.1.14
Erb, S.L., Bourchier, R.S., van Frankenhuyzen, K. & Smith, S.M. (2001). Sublethal effects of Bacillus thuringiensis Berliner subsp. kurstaki on Lymantria dispar (Lepidoptera: Lymantriidae) and the tachinid parasitoid Compsilura concinnata (Diptera: Tachinidae). Environmental Entomology, 30, 1174-1181. https://doi.org/10.1603/0046-225X-30.6.1174
Faal Mohammadali, H. & Shishehbor, P. (2013). Development, fecundity and life-table Parameters of Habrobracon hebetor (Hym: Braconidae) parasisitizing Ephestia kuehniella (Lepidoptera: pyralidae): effect of host diet. Plant Protection (Scientific Journal of Agriculture), 2, 411-419.
Hemmati, S.A., Shishehbor, P. & Stelinski, L.L. (2022). Life table parameters and digestive enzyme activity of Spodoptera littoralis (Boisd) (Lepidoptera: Noctuidae) on selected legume cultivars. Insects, 13, 661. https://doi.org/10.3390/insects13070661
Iranipour, S., Farazmand, A., Saber, M., Jafarloo, M. (2009). Demography and life history of the egg parasitoid, Trichogramma brassicae, on two moths Anagasta kuehniella and Plodia interpunctella in the laboratory. Journal of Insect Science, 9, 1-7. https://doi.org/10.1673/031.009.5101
Kumral, N.A., Kovanci, B. & Akbudak, B. (2007). Life tables of the olive leaf moth, Palpita unionalis (Hübner) (Lepidoptera: Pyralidae), on different host plants. Journal of Biological and Environmental Sciences, 1, 105-110.
Li, Y., Hill, C.B., & Hartman, G.L. (2004). Effect of three resistant soybean genotypes on the fecundity, mortality, and maturation of soybean aphid (Homoptera: Aphididae). Journal of Economic Entomology, 97, 1106-1111. https://doi.org/10.1093/jee/97.3.1106
Locatelli, D.P., Limonta, L. (1998). Development of Ephestia kuehniella (Zeller), Plodia interpunctella (Hübner) and Corcyra cephalonica (Stainton) (Lepidoptera: Pyralidae) on kernels and whole meal flours of Fagopyrum esculentum (Moench) and Triticum aestivum L. Journal of Stored Products Research, 4, 269-276. https://doi.org/10.1016/S0022-474X(98)00008-3
Madboni, M.A.Z. & Pourabad, R.F. (2012). Effect of different wheat varieties on some of developmental parameters of Anagasta kuehniella (Lepidoptera: Pyralidae). Munis Entomology and Zoology, 7, 1017-1022.
Madboni, M.A.Z. & Pourabad, R.F. (2012). Effect of different wheat varieties on some of developmental parameters of Anagasta kuehniella (Lepidoptera: Pyralidae). Munis Entomology and Zoology, 7, 1017-1022. https://doi.org/10.22124/IPRJ.2018.3112
Mahdinasab, Z., Shishehbor, P. & Faalmohammadali, J. (2014). Effect of different diet regimes of Mediterranean flour moth Ephestia kuehniella (Zeller) on biological characteristics and life table parameters of Habrobracon hebetor Say (Hymenoptera: Braconidae) under laboratory conditions. Plant Protection (Scientific Journal of Agriculture), 37, 81-96.
Mohammadi, S. & Mehrkhou, F. (2020). Effects of various cereal flour on life table parameters of Ephestia kuehniella (Lepidoptera: Pyralidae). Journal of Crop Protection. 9(1), 29-39.
Naseri, B. & Bidar, F. (2015). Two-sex life table parameters of Mediterranean flour moth, Ephestia kuehniella (Zeller) (Lep.: Pyralidae) on different barley and wheat cultivars. Journal of Entomological Society of Iran, 35(3), 63-75.
Naseri, B. & Majd-Marani, S. (2022). Different cereal grains affect demographic traits and digestive enzyme activity of Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae). Journal of Stored Products Research, 95, 101898. https://doi.org/10.1016/j.jspr.2021.101898
Nemati-Kalkhoran, M., Razmjou, J., Borzoui, E. & Naseri, B. (2018). Comparison of life table parameters and digestive physiology of Rhyzopertha dominica (Coleoptera: Bostrichidae) fed on various barley cultivars. Journal of Insect Science, 18, 1-9. https://doi.org/10.1093/jisesa/iey022
Philips, T.W. & Strand, M.R. (1994). Larval secretions and food odors in female Plodia interpunctella. Entomologia Experimentalis et Applicata, 71, 185-192. https://doi.org/10.1111/j.1570-7458.1994.tb01785.x
Rahimi Namin, F. Naseri, B., Nouri Ghanbalani, Gh. & Razmjou, J. (2018). Demographic studies of Tribolium castaneum (Coleoptera: Tenebrionidae) on various barley cultivars. Journal of Stored Products Research, 79, 60-65. https://doi.org/10.1016/j.jspr.2018.09.002
Rees, D. (2003). Insects of stored products. CSIRO Publishing, London.
Schӧller, M., Prozell, S. A., Al-Kirshi, G. & Reichmuth, C. (1997). Towards biological control as a major component of integrated pest management in stored product protection. Journal of Stored Products Research, 33, 81-97. https://doi.org/10.1016/S0022-474X(96)00048-3
Scriber, J.M. and Slansky, F. (1981). The nutritional ecology of immature insects. Annual Review of Entomology, 26, 183-211.
Shafique, M., Vita, G., Anwar, M., Qureshi, Z.A., Ahmad, M. & Shakoori, A.R. (1994). Development of Mediterranean flour moth, Ephestia kuehniella (Zeller) at different temperatures. Proceedings of Pakistan Congress of Zoology, 12, 655-659.
Sorge, D., Nauen, R., Range, S. & Hoffmann, K.H. (2000). Regulation of vitellogenesis in the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Journal of Insect Physiology, 46, 969-976. https://doi.org/10.1016/s0022-1910(99)00207-3
SPSS, computer software. )2007(. SPSS base 16.0 user’s guide. SPSS Incorporation, Chicago, IL.
Subramanyam, B., Hagstrum, D.W. )1993(. Predicting development times of six stored-product moth species (Lepidoptera: Pyralidae) in relation to temperature, relative humidity and diet. European Journal of Entomology, 90, 51-64.
Tarlack, P., Mehrkhou, F. & Mousavi, M. (2015). Life history and fecundity rate of Ephestia kuehniella (Lepidoptera: Pyralidae) on different wheat flour varieties. Archives of Phytopathology and Plant Protection, 48, 95-103. https://doi.org/10.1080/03235408.2014.882135
Vinuela, E. & Marco, V. (1990). Effects of some factors on the eclosion of eggs of Ephestia kuehniella (Zeller, 1879) (Lepidoptera: Pyralidae), SHILAP Sociedad Hispano Luso. Americanan de Lepidopterologia, 18, 317-324.
War, A.R., Paulraj, M.G., Ahmad, T., Buhroo, A. A., Hussain, B. & Ignacimuthu, S. (2012). Mechanisms of plant defense against insect herbivores. Plant Signaling and Behavior, 7, 1306-1320. https://doi.org/10.4161/psb.21663
Xu, J. (2010). Reproductive behavior of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae), Ph. D. thesis. Massey University, Palmerston North, New Zealand.
Xu, J., Wang, Q. & He, X.Z., (2008). Emergence and Reproductive Rhythms of Ephestia kuehniella (lepidoptera: pyralidae). Journal of New Zealand Plant Protection, 61, 277-282.
Yazdanian, M. (2000) Studying of the development of Mediterranean flour moth, Ephestia kuehniella, rearing on some foods prepared from meal and bran of wheat. MSc thesis, Tabriz University, 125 pp.
 © 2023 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/