ارزیابی خاصیت ضدباکتریایی اسانس به‌لیمو و پنج گونه نعنا روی باکتری‌های‌ بیمارگر Xanthomonas citri subsp citri، X. gardneri و X. perforans

نوع مقاله : علمی پژوهشی-فارسی

نویسندگان

1 دانشجوی کارشناسی ارشد رشته بیماری شناسی گیاهی، گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه لرستان، خرم‌آباد، ایران

2 استادیار گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه لرستان، خرم‌آباد، ایران

3 استاد گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه لرستان، خرم‌آباد، ایران

4 دانشیار گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه لرستان، خرم‌آباد، ایران

چکیده

بیماری شانکر باکتریایی مرکبات ناشی از باکتری Xanthomonas citri subsp. citri و لکه‌برگی‌های باکتریایی ناشی از باکتری‌های بیمارگر Xanthomonas gardneriوXanthomonas perforans  از مهمترین بیماری‌های باکتریایی می‌باشند. کنترل این بیماگرها به دلیل محدودیت استفاده از سموم، آنتی‌بیوتیک‌ها و مقاومت آن‌ها نسبت به سموم با چالش جدی مواجه می‌باشد. از این‌رو اسانس‌های گیاهی به عنوان یک جایگزین مناسب برای کنترل بیمارگرهای گیاهی مطرح می‌باشند. در مطالعه حاضر اثر اسانس‌های به‌لیمو، پونه، نعنا فلفلی، نعنا سبز، نعنا سیب و نعنا آبی علیه باکتری‌های بیمارگر X. citri subsp. citri، X. gardneri وX. perforans  بررسی شده است. پس از استخراج اسانس‌های گیاهی، ترکیبات تشکیل‌دهنده‌ی آن‌ها با کروماتوگرافی گازی-طیف سنجی‌جرمی (GC-MS) شناسایی شدند. سپس اثر ضدباکتریایی اسانس‌ها با استفاده از روش نشت در دیسک بررسی گردید. همچنین حداقل غلظت بازدارندگی (MIC) و حداقل غلظت کشندگی (MBC)، اثر ترکیبی اسانس‌های گیاهی و اثر اسانس پونه علیه باکتری X. gardneri با استفاده از میکروسکوپ الکترونی عبوری مورد بررسی قرار گرفت. نتایج آنالیز GC-MS  اسانس‌ها نشان داد که در مجموع به ترتیب 28، 28، 30، 36، 39 و 42 ترکیب به عنوان ترکیبات اسانس‌های نعنا سیب، نعنا فلفلی، پونه، نعنا آبی، نعنا سبز و به‌لیمو شناسایی شد. بیشترین میزان هاله بازدارنده مربوط به گونه پونه روی باکتری X. citri subsp. citri به میزان ۰۸/۲ ± ۲۴ میلی‌متر و کمترین هاله بازدارنده مربوط به اسانس نعنا سیب روی X. gardneri  به میزان 66/0 ± 66/5 میلی‌متر بود. MIC و MBC برای اسانس‌های مورد بررسی علیه باکتری‌های بیمارگر به ترتیب بین 5-1 و 6-2 میکروگرم بر میلی‌لیتر بود. همچنین اثر سینرژیستی بین اسانس‌های مختلف مانند نعنا فلفلی-به‌لیمو، پونه-نعنا سبز، پونه-نعنا آبی روی باکتری‌های بیمارگر مشاهده گردید. مطالعات میکروسکوپ الکترونی عبوری نشان داد که اسانس پونه سبب تخریب کامل سلول، آسیب دیواره سلولی، ناحیه هسته‌ای متورم و تغییر در تراکم سیتوپلاسم سلول‌های باکتریایی X. gardneri شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of antibacterial properties of lemon essential oil and five types of mint on pathogenic bacteria Xanthomonas citri subsp citri, X. gardneri and X. perforans

نویسندگان [English]

  • S. Z. Mousavifar 1
  • H. Mirzaei Najafgholi 2
  • M. Darvishnia 3
  • H. Mumivand 4
1 M. Sc. student, Department of Plant Pathology, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran
2 Assistant Professor, Department of Plant Pathology, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran
3 Professor, Department of Plant Pathology, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran
4 Associate Professor, Department of Horticultural Science, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran
چکیده [English]

Background and Objectives
Citrus canker disease caused by Xanthomonas citri subsp. citri and bacterial leaf spots caused by X. gardneri and X. perforans are critical bacterial diseases. The control of these pathogens is a serious challenge due to the problems caused by the restrictions on the use of poisons and antibiotics, and the issue of toxic resistance. Therefore, plant essential oils can be a suitable alternative to control plant pathogens. In the present study, the effect of Lippia citriodora, Mentha piperita, M. aquatica, M. saulavens, M. spicata and M. pulegium essential oils against X. citri subsp. citri, X. gardneri and X. perforans have been evaluated.
Materials and Methods
After plant essential oils extraction by clevenger, their constituent compounds were identified by GC-MS. Then, the antibacterial effect of essential oils was surveyed using the disk diffusion method. Also, the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC), the combined effect of plant essential oils, and the effect of M. pulegium essential oil against X. gardneri were investigated using Transmission electron microscopy.
Results
The results of GC-MS essential oils analysis showed that a total of 28, 28, 30, 36, 39, and 42 compounds were identified in M. saulavens, M. piperita, M. pulegium, M. aquatica, M. spicata, and L. citriodora essential oil compounds, respectively. The highest and lowest amount of inhibitory zone was related to oregano species on the bacteria X. citri subsp. citri with an amount of 24 ± 2.08 mm and apple mint essential oil on X. gardneri with an amount of 5.66 ± 0.66 mm, respectively. MIC and MBC for the examined essential oils against the pathogenic bacteria were between 1-5 and 2-6 μg/ml, respectively. Also, the synergistic effect was observed between different essential oils such as M. piperita- L. citriodora, M. pulegium- M. spicata, M. pulegium- M. aquatic, M. aquatic- M. piperita, M. aquatic- M. pulegium, M. pulegium- M. saulavens on pathogenic bacteria. Transmission electron microscope photos related to the effect of M. pulegium essential oil against X. gardneri bacteria showed complete cell destruction, cell wall damage, swollen nuclear, area and changes in the cytoplasm density of bacterial cells.
Discussion
Essential oils are regarded safe substances when considering the control limitations of bacterial infections, bacterial resistance to toxins, and environmental issues associated with the use of toxins. Also, due to the different compositions of essential oils and the observation of synergistic properties between them in this study, the risk of developing resistance to them decreases, and their antibacterial effect increases.

کلیدواژه‌ها [English]

  • MIC
  • MBC
  • GC-MS
  • essential oil
Adam, K., Sivropoulol, A., Kokkini, S., Lanaras, T., & Arsenakis, M. (1998). Antifungal activities of Origanum vulgare subsp. hirtum, Mentha spicata, Lavandula angustifolia and Salvia fruticosa essential oils against human pathogenic fungi. Journal of Agricultural and Food Chemistry, 46, 1739-1745. https://doi.org/10.1021/jf9708296.
Adams, R. P. (2007). Identification of essential oil component by gas chromatography. Quadropole Mass Spectroscopy. Allured Publishing Corporation, Illinois, U.S.A.
Aeini, M., Khodakaramian, G., & Mirzaei Najafgholi, H. (2018). Sugar Beet Leaf Culturable Endophytic Bacterial Composition from the Major Sugar Beet Growing Areas in the West of Iran. Journal of Genetic Resources 4, 105-113. https://dx.doi.org/10.22080/jgr.2019.15537.1118
Afridi, M., Ali, J., Abbas, S., Rehman, S., Khan, F., Khan, M., & Shahid, M. (2016). Essential oil composition of Mentha piperita L. and its antimicrobial effects against common human pathogenic bacterial and fungal strains. Pharmacology Online 3, 90-97.
Aggarwal, K., Khanuja, S., Ahmad, A., Santha Kumar, T., Gupta, V. K., & Kumar, S. (2002). Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils of Mentha spicata and Anethum sowa. Flavour and Fragrance Journal, 17, 59-63. http://dx.doi.org/10.1002/ffj.1040.
Akthar, M. S., Degaga, B., & Azam, T. (2014). Antimicrobial activity of essential oils extracted from medicinal plants against the pathogenic microorganisms: A review. Journal Issues, 2350, 001-007.
Alizadeh Amoli, Z., Mehdizadeh, T., & Tajik, H. (2021). Comparative study of antioxidant and antimicrobial properties of Mentha aquatica L. ethanolic extract and essential oil. Studies in Medical Sciences, 31, 873-863. (In Farsi with English summary)
Babaei, S. A., & Zhiyani, R. (2013). Investigation of plant chemical compounds to lemon )Lippia citriodora): The essential oil of the plant increases the survival of PC12 cells treated with H2O2.  Neuroscience journal of Shefaye khatam. 2, 38. (In Farsi with English summary). http://dx.doi.org/10.18869/acadpub.shefa.2.1.31
Beiki, F., & Alizadeh, A. (2005). Antibacterial effects of some herbal essential oil and extract on the causal agent of bacterial leaf streak in wheat and barley. Journal of Agricultural Sciences and Natural Resources, 13, 70-81.  (In Farsi with English summary)
Beuchat, L. R., & Golden, D. A. (1998): Antimicrobials Naturally in Foods. Food technology, 11, 134-142.
Boukhebti, H., Chaker, A. N., Belhadj, H., Sahli, F., Ramdhani, M., Laouer, H., & Harzallah, D. (2011). Chemical composition and antibacterial activity of Mentha pulegium L. and Mentha spicata L. essential oils. Der Pharmacia Lettre, 3, 267-275.
Bouyahya, A., Et-Touys, A., Bakri, Y., Talbaui, A., Fellah, H., Abrini, J., & Dakka, N. (2017). Chemical composition of Mentha pulegium and Rosmarinus officinalis essential oils and their antileishmanial, antibacterial and antioxidant activities. Microbial pathogenesis, 111, 41-49. https://doi.org/10.1016/j.micpath.2017.08.015
Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods- a review. International Journal of Food Microbiology, 94, 223-253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
Camele, I., Gruľová, D., & Elshafie, H. S. (2021). Chemical composition and antimicrobial properties of Mentha piperita cv. ‘Kristinka’essential oil. Plants, 10, 1567. https://doi.org/10.3390/plants10081567
Celiktas, O. Y., Kocabas, E. H., Bedir, E., Sukan, F. V., Ozek, T., & Baser, K. (2007). Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations. Food Chemistry, 100, 553-559.
Etminani, F., & Etminani, A. (2018). Antibacterial activity of hydroalcoholic extracts of Thymus vulgaris and Lippia citriodora on Pseudomonas syringae bacteria in laboratory conditions. Molecular Research Journal (Iranian Journal of Biology), 1, 12-18. (In Farsi with English summary)
Gleiser, R. M., & Zygadlo, J. A. 2007. Insecticidal properties of essential oils from Lippia turbinata and Lippia polystachya (Verbenaceae) against Culex quinquefasciatus (Diptera: Culicidae). Parasitology Research 101, 1349-1354. https://doi.org/10.1007/s00436-007-0647-z
Hadjiakhoondi, A., Aghel, N., Zamanzadeh-Nadgar, N., & Vatandoost, H. (2000). Chemical and biological study of Mentha spicata L. essential oil from Iran. DARU Journal of Pharmaceutical. Sciences, 8, 19-21.
Helander, I. M., Alakomi, H. L., Latva-Kala, K., Mattila-Sandholm, T., Pol, I., Smid, E. J., Gorris, L. G., & von Wright, A. (1998). Characterization of the action of selected essential oil components on Gram-negative bacteria. Journal of agricultural and food chemistry, 46, 3590-3595.
Hevesi, M., Boja, N., Banatfy, R., Babulka, P., & Toth, M. (2006). In vitro inhibition of growth of Erwinia amylovora by plant oils. Mitteilungen-biologischen bundesanstalt fur land und forstwirtschaft, 408, 262-264.
Hsouna, A. B., Touj, N., Hammami, I., Dridi, K., Sulayman Aleyd, A., & Hamdi, N. (2019). Chemical composition and effect in vivo essential oil Mentha piperita L. In suppressing disease crown disease in tomato plants. Juornal of Olao science, 68, 419-426. https://doi.org/10.5650/jos.ess
Jerkovic, I., & Mastelic, J. (2001). Composition of Free and Glycosidically Bound Volatiles of Mentha aquatica L. Croatica Chemica Acta, 74, 431-439.
 Juven, B. J., Kanner, J., Schved, F., & Weisslowicz, H. (1994). Factors that intract with the antibacterial action of thyme essential oil and its active constituents. Journal of Applied Bacteriol, 76, 626-631.
Kazem Alvandi, R., Sharifan, A., & Aghazadeh mashgi, M. (2009). Chemical composition and antimicrobial effect of plant essential oil Mentha piperita. Comparative pathobiology, 7, 355-364. (In Farsi with English summary)
Khalilipour, A., & Dejam, M. (2014). Essential oil composition of Pennyroyal (Mentha pulegium L.) from Southern Iran. Journal of Herbal Drugs, 5, 33-37.
Lucas, G. C., Alves, E., Pereira, R. B., Perina, F. J., & Souza, R. M. (2012). Antibacterial activity of essential oils on Xanthomonas vesicatoria and control of bacterial spot in tomato. Pesquisa Agropecuária Brasileira, 47, 351-359. https://doi.org/10.1590/S0100-204X2012000300006
Luís, A., & Domingues, F. (2021). Screening of the Potential Bioactivities of Pennyroyal (Mentha pulegium L.) Essential Oil. Antibiotics, 10, 1266. https://doi.org/10.3390/antibiotics10101266
Mahboubi, M., & Haghi, G. (2008). Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. Journal of Ethnopharmacology, 119, 325-7. https://doi.org/10.1016/j.jep.2008.07.023
Mahmodi, H., Rahnama, K., & Arabkhani, M. A. (2009). Investigation of Antibacterial Effect of Essential Essence and Aqueous Extract of Medicinal Plants on Bacteria and Bacterial Trees. Journal of Medicinal Plants, 9, 36. (In Farsi)
Militello, M., Settanni, L., Aleo, A., Mammina, C., Moschetti, G., Giammanco, G., Blàzquez, M. A., and Carrubba, A. 2011. Chemical composition and antibacterial potential of Artemisia arborescens L. essential oil. Current Microbiology 62: 1274-1281. https://doi.org/10.1007/s00284-010-9855-3.
Mirzaei-najafgholi, H., Tarighi, S., Golmohammadi, M., and Taheri, P. (2017). The effect of Citrus essential oils and their constituents on growth of Xanthomonas citri subsp. citri. Molecules 22, 591. https://doi.org/10.3390/molecules22040591
Mokhayeri, K., Kouhsari, H., & Seyedalangi, S. Z. (2017). Determination of chemical compounds and minimum inhibitory concentration and bacteriography of menthological
essential oil on Staphylococcus aureus and Escherichia coli bacteria. Microbiology of Food, 4, 9-19. (In Farsi with English summary)
Oussalah, M., Caillet, E., Saucier, L., & Lakroix, M. (2007).  The inhibitory effects of selected plant essential oils on the growth of four pathogens: E. coli O157: H7, Salmonella typhimurium, Staphylococcus aureus and Listeria. Food control, 18, 414-420. https://doi.org/10.1016/j.foodcont.2005.11.009
Pazhouhi, M., Tajik, H., Akhondzadeh, A., Gandomi, H., Ehsani, A., & Shokohi Sabetjalali, F. (2019). Evaluation of chemical compounds and antimicrobial activity of essential oil of oregano (Mentha longifolia L.) and cumin seed (Cuminum cyminum L.) alone and combined with nisin. Urmia Medical Journal, 2, 324-331. (In Farsi)
Pol, I. E., Krommer, J., & Smid, E. J. (2002). Bioenergetic consequences of nisin combined with carvacrol towards Bacillus cereus. innovative food science & emerging technologies, 3, 55-61. https://doi.org/10.1016/S1466-8564(01)00055-8
Soylu, S., Soylu, E. M., Baysal, O., & Zeller, W. (2005). Antibacterial activities of the essential oils from medicinal plants against the growth of Clavibacter michiganensis subsp. michiganensis. Biologischen bundesanstalt fur land und forstwirtschaft, 408, 82.
S-Ozturk, E., & Ercisli, S. (2007). Antibacterial activity and chemical constitutions of Ziziphora clinopodioides. Food control, 18, 535-540. https://doi.org/10.1016/j.foodcont.2006.01.002
Sutour, S., Tomi, F., & Bradesi, P. (2011). Chemical Composition of the Essential Oil from Corsican Mentha aquatica - Combined Analysis by GC(RI), GC-MS and 13C NMR Spectroscopy‏ . Natural Product Communications, 6, 1479-1482.
Yahyaabadi, Y., Mahmodi Ataghori, A., & Nazifi, E. (2018). Phytochemical study and pollination of a number of Mentha L species in northern Iran. Journal of Herbal Research (Iranian Biology Journal), 33, 1-23. (In Farsi with English summary). https://dorl.net/dor/20.1001.1.23832592.1399.33.4.8.4
 © 2023 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/