بررسی فراسنجه‌های جدول زیستی شته مومی کلم،Brevicoryne brassicae (L.) (Hemiptera: Aphididae) تحت تأثیر غلظت زیرکشنده حشره‌کش ماترین

نوع مقاله : علمی پژوهشی-فارسی

نویسندگان

1 کارشناسی ارشد، گروه گیا‌ه‌پزشکی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

2 استاد، گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

3 استادیار، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان غربی، سازمان تحقیقات آموزش و ترویج کشاورزی، ارومیه، ایران.

چکیده

شته مومی کلمBrevicoryne brassicae  یکی از جدّی‎ترین آفات کلم در جهان است. این آفت از برگ‌ها و بیشتر از برگ‌های میانی گیاه میزبان خود تغذیه می‌کند. شته‌ها به رغم داشتن دشمنان طبیعی فراوان، به خاطر زاد و ولد سریع، به وسیله دشمنان طبیعی به طور کامل کنترل نمی‎شوند.کاربرد حشره‌کش‌های شیمیایی از روش‌های مهم مورد استفاده برای کنترل شته‌ها هستند. کاربرد یک آفت‌کش برای کنترل چند آفت می‌تواند هزینه‌ها و دفعات سمپاشی را کاهش دهد. در این پژوهش، اثرت کشنده و زیرکشنده حشره‌کش ماترین که دارای عملکرد تماسی و گوارشی است، روی شته‌ مومی کلم در شرایط آزمایشگاهی با روش غوطه‌ور کردن دیسک‎های برگی حامل شته در داخل محلول حشره‎کش مورد بررسی قرار گرفت. مقدار LC50 حشره‌کش ماترین برای افراد بالغ شته مومی کلم بعد از 24 ساعت 33/83 میکرولیتر بر میلی‌لیتر بدست آمد و  برای برآورد اثرات زیرکشندگی ماترین روی فراسنجه‌های زیستی شته مومی کلم از غلظت LC25 (11/30  میکرولیتر بر میلی‌لیتر) استفاده شد. آزمایش‌ها روی گیاه کلم واریته acephala انجام گرفت. یکی از روش‌های رایج بررسی اثرات غیرکشندگی حشره‌کش‌ها، استفاده از فراسنجه‌های جدول زندگی برای ارزیابی سمیت است. نتایج این تحقیق نشان داد که طول عمر و باروری شته‌های بالغ در غلظت زیرکشنده حشره‌کش نسبت به شاهد (آب مقطر و سیتوویت) به طور معنی‌داری کمتر بود. میانگین طول دوره پوره‌زایی شته‌های بالغ تحت تأثیر غلظت‌های زیرکشنده این حشره‌کش از 92/8 روز در شاهد به 79/3 روز در LC25 کاهش یافت. همچنین غلظت زیرکشنده ماترین، نرخ خالص تولیدمثل (R0) از 96/23 پوره به ازای هر ماده در هر نسل در تیمار شاهد را به 26/3 پوره کاهش داد. نرخ ذاتی افزایش جمعیت (r) در غلظت زیرکشنده 36/0 برروز و در شاهد 1/0 برروز ثبت شد. سایر فراسنجه‎ها مانند نرخ متناهی افزایش جمعیت (l) و نرخ ناخالص تولیدمثل (GRR) نیز به طور معنی‌داری نسبت به شاهد کمتر شدند. میانگین طول یک نسل (T) تحت تأثیر حشره‎کش ماترین نسبت به شاهد افزایش یافت. نتایج تحقیق حاضر در شرایط آزمایشگاهی نشان داد که این حشره‌کش اثرهای کشنده و زیرکشنده قابل ملاحظه‌ای روی شته مومی کلم دارد. لذا حشره‌کش گیاهی ماترین می‎تواند در برنامه‎های مدیریت شته مومی کلم نیز مورد توجه قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Study on the life table parameters of the cabbage aphid, Brevicoryne brassicae (L.) (Hemiptera: Aphididae) influenced by sublethal concentrations of the matrine

نویسندگان [English]

  • V. Amirfanak 1
  • S.A. Safavi 2
  • M. Forouzan 3
1 MSc, Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran.
2 Professor, Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran
3 Assistant Professor, Agriculture and natural resources research center of west Azarbaijan, AREEO, Urmia, Iran
چکیده [English]

Background and Objectives
Brevicoryne brassicae is one of the most serious cabbage pests in the world. This pest feeds on the leaves, mostly on the host plant's middle leaves. Despite having many natural enemies, aphids are not entirely controlled by natural enemies due to their rapid reproduction. Applying chemical insecticides is one of the essential methods used to control aphids; using one pesticide to control several pests can reduce the costs and frequency of spraying. In this study, the lethal and sub-lethal effects (LC25) of matrine insecticide with a contact and stomach function on the cabbage aphid, were evaluated under laboratory conditions.
Materials and Methods
The dipping method was used in bioassay and life table studies against adults of aphid insects. The LC50 value of matrine insecticide for adults of cabbage aphid was 83.33 μl/ml after 24 hours, and LC25 concentration (30.11 ml/ml) was used to estimate the sub-lethal effects of matrine on the biological parameters of the cabbage aphid. Experiments were performed on the acephala variety of cabbage. One common method of investigating insecticides' non-lethal effects is demographic toxicology, which uses life table and growth population parameters to evaluate toxicity.
Results
According to the results, the female lifespan/longevity and fertility affected by sub-lethal concentration were significantly reduced compared to the control (distilled water and citowett). The mean oviposition period of adult aphids decreased from 8.92 days in control to 3.79 days in LC25 concentration of the insecticide. The present study's data also showed that the sublethal concentration also affected the offspring of treated cabbage aphids. Accordingly, the sublethal concentration of matrine reduced the net reproductive rate (R0) from 23.96 nymphs per female in each generation in the control treatment to 3.26 nymphs in LC25. The intrinsic rate of increase (r) in sublethal concentration was recorded as 0.36 (day-1) and in control as 0.1 (day-1). Other parameters, such as finite rate of increase (l) and gross reproductive rate (GRR), were also significantly lower than the control. The mean generation time (T) of treatment affected by LC25 concentration of matrine increased compared to the control treatment.
Discussion
Results of the current research in laboratory conditions showed that this insecticide has significant lethal and sublethal effects on the cabbage aphid. Therefore, matrine, as an herbal insecticide, can be considered in the management programs of cabbage aphids.

کلیدواژه‌ها [English]

  • life table
  • sublethal effects
  • bioassay
  • botanical insecticide
Akdeniz, D. & Ozman, A. (2011). Antimitotic effects of the biopesticide oxymatrine, Caryologia, 64(1), 117-120.
Ali, S., Zhang, C., Wang, Z., Wang, X. M., Wu, J. H., Cuthbertson, A. G. S., Shao, Z. & Qiu, B. L. (2017). Toxicological and biochemical basis of synergism between the entomopathogenic fungus Lecanicillium muscarium and the insecticide matrine against Bemisia tabaci (Gunnadius). Scientific Reports, 7(1): 1-14.
Alizadeh, S. & Safavi S.A. (2019). Toxicity of spirotetramat, spiromesifen, thiamethoxam + lambdacyhalothrin and azadirachtin on cabbage aphid, Brevicoryne brassicae (Hem.: Aphididae). Plant pest Research, 9(1): 37-49 (In Farsi with English summary).
Ansari, A., Gheibi, M. & Hesami, Sh. (2014). Effects of Azadirachtin on reproductive parameters of aphid rose, Macrosiphum rosae (Hmiptera: Aphididae) in the laboratory conditions. Plant Protection Journal, 6(3): 225-244.
Ansari, A., Gheibi, M. & Hesami, Sh. (2014). Effects of Azadirachtin on reproductive parameters of aphid rose, Macrosiphum rosae (Hmiptera: Aphididae) in the laboratory conditions. Plant Protection Journal, 6(3): 225-244.
Ayaz, F. A., Glew, R. H., Millson, M., Huang, H. S., Chuang, L. T., Sanz, C. & Hayirhoglu-Ayaz, S. (2006). Nutrient contents of kale (Brassica oleraceae L. Var acepbala DC.) Food Chemistry, 96(4): 572-579.
Bagheri, N. Mohammadi Sharif, M. & Golmohammadi, G. H. (2021). Comparing the efficacy of some chemical and non-chermical insecticides for control of cotton bollworm, Helicoverpa armigera (Hubner) under cotton field conditions. Plant Protection (Scientific Journal of Agriculture), 44(3):1-11 (In Farsi with English summary).
Bakr, E. M., Soliman, Z. R., Hassan, M. F. & Tawadrous, S. S. D. (2012). Biological activity of the organic pesticide Baicao No. 1 against the red spider mite Tetranychus urticae Koch. Journal of the Egyptian Society of Acarology, 6(1): 35-39.
Blackman, R. L. & Eastop, V. F. (2000). Aphids of the World's Crops: An Indentification and Information Guide. (2nd ed.). John Wiley and Sons, London.
Blackman, R. L. & Eastop, V. F. (2006). Aphids on the World's Herbaceous Plants and Shrubs (Volume 1 host lists and keys). John Wiley and Sons, London. 1456pp.
Carey, J. R. (1993). Applied demography for biologists with special emphasis on insects. Oxford University Press, New York, Oxford, 206.
Chi, H. & Liu, H. (1985). Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinica, 24(2): 225-240
Chi, H. (1988). Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 17(1): 26-34.
Chi, H. (2020). TWOSEX-MSChart: a computer program for age stage, two-sex life table analysis. National Chung Hsing Univesity, Taichung, Taiwan; available from http:// 140. 120.197.173/Ecology/Downloud/ TWOSEX-MSchart. Rar
Desneux, N., Decourtye, A. & Delpuech, J. M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52: 81-106.
Georghiou, G. P. (1986). The magnitude of the resistance problem, in pesticide resistance: strategies and tactics for management. National academic press, Washington, DC. 14-43.
Hikal, WM., Baeshen, RS & Said-Al Ahl. (2017). Botanical insecticide as simple extractives for pest control. Cogent Biology, 3(1): 1404274.
Hines, R. L. & Hutchison, W. D. (2013). Cabbage aphids on vegetable IPM resource for the Midwest. University of Minnesota, Minneapolis, MN.
Hwang, I. C., Kim, J., Kim, H. M., Kim, D. I., Kim, S. G., Kim, S. S. & Jang, C. (2009). Evaluation of toxicity of plant extract made by neem and matrine against main pests and natural enemies. Korean Journal of Applied Entomology, 48(1): 87-94.
Khan, M. Sh., Akbar, M. F., Sultan, A., Saleem, M. S. & Gul, C. (2019). Testing the effect of different insecticides on Myzus percicae (Hemoptera: Aphididae) in field mustard (Brassica Campestris L.) Czern for possible consideration in an IPM strategy. International Journal of Tropical Insect Science, 40(1): 225-231.
Khanjani, M. (2007). Vegetable Pests in Iran. Bu-Ali Sina University Press Center, Hamedan. 467pp. (In Farsi).
Khattak, S. U., Hameed, A. U., Khan, A. Z. & Farid, A. (2002). Pesticidal control of rapeseed aphid, Brevicoryne brassicae L. Pakistan Journal of Zoology, 34: 222-228.
Kordestani, M., Mahdian, K., Baniameri, V., & Sheikhi Garjan, A. (2021). Lethal and sublethal effects of proteus, matrine, and pyridayl on Frankliella occidentalis (Thysanoptera: Thripidae). Environmental Entomology, 50(2): 1137-1144.
Kordestani, M., Mahdian, K., Baniameri, V., & Sheikhi Garjan, A. (2022). Proyeus, Matrine, and Pyridalyl toxicity and their sublethal effects on Qrius laevigatus (Hemiptera: Anthocoridae). Journal of Economic Entomology, 115(2): 573-581.
Lashkari, M. R., Sahragard, A. & Ghadamyari, M. (2007). Sublethal effects of imidacloprid and pymetrozine on population growth parameters of cabbage aphid, Brevicoryne brassicae on rapeseed, Brassica napus L. Journal of Insect Science, 14(3): 207-212.
Lengai, GMV., Muthomi, JW & Mbega, ER. (2020). Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Scientific African, 7, e00239.
Liu, Z.L., Goh, S. H. & Ho, S. H. (2007). Screening of Chinese medicinal herbs for bioactivity against Sitophilus zeamais Motschulsky and Triboulium castaneum (Herbst). Journal of Stored Products Research, 43(3): 290-296.
Lowery, D. T., Smirle, M. J., Foottit, R. G., Zurowski, C. L. & Beers Peryea, E. H. (2005). Baseline susceptibilities to imidacloprid for green apple aphid and spirea aphid (Homoptera: Aphididae) collected from apple in the Pacific Northwest. Journal of Economic Entomology, 98: 188-194.
Ma, T., Yan, H., Shi, X., Liu, B., Ma, Z. & Zhang, X. (2017). Comprehensive evaluation of effective constiuents in total alkaloids from Sophora alopecuroides L. and their joint action against aphids by labrotory toxicity and field efficacy. Industrial Crop & Products, 111: 149-157.
Mao, L. & Henderson, G. (2007). Antifeedant activity and acute and residual toxicity of alkaloids from Sophora flavescens (Leguminosae) against Formosan subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 100(3): 866-870.
Mehrkhou, F., Mahmoodi, L. & Mouavi, M. (2013). Nutritional indices parameters of large white butterfly Pieris brassicae (Lepidoptera: Pieridae) on different cabbage crops. African Journal of Agricultural Research, 8(25): 3294-3298.
Mohamed, H. Th., Mohamed. I. A., Abou-Elhagag, G. H. & Saba, R. M. (2015). Toxicity and field persistence of thiamethoxam and dinotefuran against cabbage aphid, Brevicoryne
brassica L. (Homoptera: Aphididae) under laboratory and field conditions. Journal of Phytopathology and Pest Management, 2(2): 20-26.
Moharramipour, S., Monfard, A. & Fathipour, Y. (2003). Comparison of intrinsic rate of increase and relative growth rate of cabbage aphid (Brevicoryne brassicae L.) on four rapesed (Brassica napus L.) varieties in a growth chamber. Agriculture Science, 13(3): 79-86.
Moradi Afrapoli, F., Mohammadi Sharif, M., Barimani Varandi, H. & Shayanmehr M. (2022). Susceptilibity of Cydalima perspectalis (Lepidoptera: Crambidae) larvae to some reduced-risk insecticides in laboratory bioassays. Journal of Forest Science, 68(7): 253-262.
Pavela, R., Barnet, M. & Kocourek, F. (2004). Effect of azadirakhtin applied systemically through roots of plants on the mortality, development and fecundity of the cabbage aphid (Brevicoryne brassicae). Phytoparasitica, 32(3): 286-294.
Romasi, F., Vahedi, H., Moeeni Naghadeh, M. & Mahmoudvand, M. (2021). The effects of botanical insecticides palizin® and tondexir® on cabbage aphid, Brevicoryne brassicae L. under laboratory conditions. Plant Protection. 43(4): 71-91 (In Farsi with English summary).
Rustamani, M. A., Qamikhani, U. F., Munshi, G. H. & Chutto, A. B. (1988). Efficacy of different insecticides against mustard aphid, Brevicoryne brassicae L. Sarhad Journal of Agriculture, 4: 659-664.
Saleem, M. S. Batool, T. S., Akbar, M. F., Raza, S. & Shahzad, S. (2019). Efficiency of botanical pesticides against some pests infesting hydroponic cucumber, cultivated under greenhouse conditions. Egyption Journal of Biological Pest Control, 29(1): 1-7.
Sarwar, M. (2017). Integrated control of insect pests on canola and other brassica oilseed crops in Pakistan. In Reddy, G. V. P. (Eds.). Integrated Management of Insect Pests on Canola and Other Brassica Oilseed Crops, Wallingford, Oxfordshire, UK, CABI. 408.
Sharifi, M., Taghi Mobasheri, M., Ghaderi, K. & Malek Shahkoei, S. (2019). Comparison of the efficiency of rui agro as new insecticides if cereal leaf beetle Lema melanopa (Col.: Chrysomelidae) in field conditions. Journal of Entomological Research, 1(12): 51-60 (In Farsi with English summary).
Stark, J. D. Banks, E. (2003). Population level effects of pesticides and other toxicants on arthropods. Annual Review of Entomology, 48(1): 505-529.
Taheri-Sarhozaki, M. & Safavi S. A. (2014b). Population growth parameters of the cabbage aphid, Brevicoryne brassicae (L.) (Hemiptera: Aphididae) exposed to sublethal doses of thiacloprid. Archives of Phytopathology and Plant Protection. 47: 464-471.
Taheri-Sarhozaki, M. Safavi, S. A. (2014a). Sublethal effects of tiametoxam on life table parameters of the cabbage aphid, Brevicoryne brassicae (L.) (Hemiptera: Aphididae) under laboratory conditions. Archives of Phytopathology and Plant Protection. 47: 508-515.
Tawfiq, M., Ateyyat, M. A. & Abussamin, B. M. (2010). Toxicity of certain insecticides to the parasitoid Diaeretiella rapae (Mcintosh) (Hymenoptera: Aphidiae) and its host, the cabbage aphid Brevicoryne brassicae L. (Homoptera: Aphididae). Australain Journal of Basic and Applied Sciences, 4(6): 994-1000.
van Emden, H. F. & Harrington, R. (2007). Aphids as Crop Pests, CAB International. Wallingford/Oxford, UK, 153-186.
Walthall, W. K. & Stark, J. D. (1997). A comparison of acute mortality and population growth rate as endpoints of toxicological effect. Ecotoxicology and Environmental Safety, 37: 45-52.
Wang, D., Lv, W., Yuan, Y., Zhang, T., Teng, H., Losey, J. E. & Chang, X. (2022). Effects of insecticides on malacostraca when managing diamondback moth (Plutella xylostella) in combination planting-rearing fields. Ecotoxicology and Environmental Safety, 229:1-7.
Wang, Y. L., Guan, Z. G., Jia, X. S., Wu, S. Y. & Wei, H. G. 2007. Study progress of matrine application in farming pest control. Journal Shanxi Academy of Agricultural Sciences, 40: 424-428.
Wu, J. H., Yu, X., Wang, X. S., Tang, L. D. & Ali, S. (2019). Matrine enhances the pathogenicity of Beauveria brongniartii against Spodoptera litura (Lepidoptera: Noctuidae). Frontiers in Microbiology, 10: 1812.
Xiang, Z., Shang, S., CAI, K., Geng, Z. & Chen, X. (2012). Determination and decline study of matrine residue in tobacco by gas chromatography-nitrogen chemiluminessence detector. Chinese Journal of Pesticide Science, 14(2): 198-202.
Yang, X. Y. & Zhao, B. G. (2006). Antifungal activities of matrine and oxymatrine and their synergetic effects with chlorthalonil. Journal of Forestry Research, 17(4): 323-325.
Zanardi, O.Z. Ribeiro, L. D. P. Ansante, T. F. Santos, M. S. Bordini, G. P. Yamamoto, P. T. Vendramim, J. D. (2015). Bioactivity of a matrine-based biopesticide against four pest species of agricultural importance. Crop Protection, 67: 160-167.
Zhang, S., Zhang, Y., Zhuang, Y., Wang, J., Ye, J., Zhang, S., Wu, J., Yu, K. & Han, Y. (2012). Matrine induce apoptosis in human acute myeloid leukemia cells via the mitochondrial pathway and Akt inactivation. Public Library of Science, 7(10): 1-11.
Zhao, Y., Wang, Q., Ding, J., Wang, Y., Zhang, Z., Liu, F. & Mu, W. (2018). Sub lethal effects of chlorfenapyr on the life table parameters, nutritional physiology and enzymatic properties of Bradysia odoriphage (Diptera: Sciaridae). Pesticide Biochemistry and Physiology, 148: 93-102.
 © 2023 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/