Simultaneous detection of Beet necrotic yellow vein virus (BNYVV) and Beet black scorch virus (BBSV) using Duplex Reverse Transcription-PCR method

Document Type : Research paper-Persian

Authors

1 Assistant Professor, Sugar Beet Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran

2 Associate Professor, Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Background and Objectives
Beet necrotic yellow vein virus (BNYVV) and Beet black scorch virus (BBSV) have been observed in infected sugar beet roots from Iranian fields. This study aimed to detect the two viruses simultaneously to save time and energy during the infection detection process.
Materials and Methods
Three methods were utilized in this study. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect two viruses following total RNA extraction from the farm sample. In the first method (the standard method), the mentioned viruses were identified by amplifying 545 bp fragments from the TGB region of the RNA2 genome of the BNYVV virus and 305 bp fragments from the 3'UTR region of the BBSV virus using specific primers. Viruses on an infected root were identified using RT-PCR with primers specific to each virus and performed independently. In the second and third methods, we employed simplex and duplex RT-PCR gradient methods to simultaneously identify two viruses at annealing temperatures of 52, 54, and 56 °C. To this end, virus-specific primers (designed from a part of the gene encoding the coat protein) were used separately but simultaneously with a common PCR program in a thermocycler. These specific primers amplified 391 and 453 bp fragments of the BNYVV and BBSV coat proteins, respectively.
Results
The study's findings show that by performing simplex and duplexRT-PCR simultaneously and optimizing the annealing temperature of primers from the gene encoding the protein coat, target fragments of 453 and 391 bp from BBSV and BNYVV, respectively, are amplified. This study found that an annealing temperature of 56 °C is the optimal temperature for duplex RT-PCR to separate the two viruses. Consequently, simultaneous identification of the BNYVV and BBSV was achieved through this method.
Discussion
The present study demonstrates that simplex and duplexRT-PCR are suitable for simultaneous detection and are cost-effective in terms of saving time and energy. They can also be used to prepare distribution maps in sugar beet cultivation areas and to evaluate and identify resistant sugar beet lines in breeding programs under greenhouse conditions.

Keywords


Abadkhah, M., Kashiha, Z., Koolivand, D., & Eini Gandomani, O. (2017). Simultaneous identification of Cucumber mosaic virus and Tomato spotted wilt virus from tomato fields and their phylogenetic analysis. Plant Protection (Scientific Journal of Agriculture)40(1), 1-14.
Abe, H., & Tamada, T. (1986). Association of Beet necrotic yellow vein virus with isolates of Polymyxa betae Keskin. Japanese Journal of Phytopathology52(2), 235-247.
Alvarez-Díaz, J. C., Ortiz-Echeverry, B. A., & Velásquez, N. (2019). Duplex RT-PCR assay for simultaneous detection of TSWV and CSVd in chrysanthemum. Journal of Virological Methods266, 41-48.
Asher, M. J. C. (1993). Rhizomania In: The Sugar Beet Crop (Cook DA and Scott RK, eds.).
Biancardi, E., & Tamada, T. (Eds.). (2016). Rhizomania. Switzerland: Springer International Publishing.
Borodynko, N., Hasiow-Jaroszewska, B., & Pospieszny, H. (2009). Evidence for the presence of Beet necrotic yellow vein virus types A and B in Poland. Journal of Plant Diseases and Protection116(3), 106-108.
Cai, Z. N., Chen, D. H., Wu, M. S., Cui, X. M., Yu, J. L., & Liu, Y. (1993). Identification of pathogenic virus of beet black scorch disease and detection by synthesized cDNA probes. J. Beijing Agric. Univ19, 112.
Canova, A. (1959). Appunti di patologica della barbabietola. Inf Fitopatol9, 390-396.
Cao, Y. Cai, Z., Ding, Q., Li, D., Han, C., Yu, J., & Liu, Y. (2002). The complete nucleotide sequence of Beet black scorch virus (BBSV), a new member of the genus Necrovirus. Archives of Virology147(12), 2431-2435.
Chiba, S., Kondo, H., Miyanishi, M., Andika, I. B., Han, C., & Tamada, T. (2011). The evolutionary history of Beet necrotic yellow vein virus deduced from genetic variation, geographical origin and spread, and the breaking of host resistance. Molecular Plant-Microbe Interactions24(2), 207-218.
Choi, H., Cho, W. K., Yu, J., Lee, J. S., & Kim, K. H. (2013). Highly specific detection of five exotic quarantine plant viruses using RT-PCR. The Plant Pathology Journal29(1), 99.
Cui, X. (1988). An icosahedral virus found in sugar beet. J Xinjiang Shihezi Agric College10, 73-78.
EFSA Panel on Plant Health (PLH), Dehnen‐Schmutz, K., Di Serio, F., Gonthier, P., Jacques, M. A., Jaques Miret, J. A. & Bragard, C. (2020). Pest categorisation of Beet necrotic yellow vein virusEFSA Journal18(12), e06360.
Fujisawa, I., & Sugimoto, T. (1977). Transmission of beet necrotic yellow vein virus by Polymyxa betaeJapanese Journal of Phytopathology43(5), 583-586.
Gilmer, D., Ratti, C., & Consortium, I. R. (2017). ICTV virus taxonomy profile: Benyviridae.  Journal of General Virology98(7), 1571.
Gitton, F., Diao, A., Ducrot, O., Antoniw, J. F., Adams, M. J., & Maraite, H. (1999). A two-step multiplex RT-PCR method for simultaneous detection of soil-borne wheat mosaic virus and wheat spindle streak mosaic virus from France. Plant Pathology48(5), 635-641.
González-Vázquez, M., Ayala, J., García-Arenal, F., & Fraile, A. (2009). Occurrence of Beet black scorch virus infecting sugar beet in Europe. Plant Disease93(1), 21-24.
Guo, L. H., Cao, Y. H., Li, D. W., Niu, S. N., Cai, Z. N., Han, C. G., Han & Yu, J. L. (2005). Analysis of nucleotide sequences and multimeric forms of a novel satellite RNA associated with Beet black scorch virusJournal of Virology79(6), 3664-3674.
Harju, V. A., Skelton, A., Clover, G. R. G., Ratti, C., Boonham, N., Henry, C. M., & Mumford, R. A. (2005). The use of real-time RT-PCR (TaqMan®) and post-ELISA virus release for the detection of Beet necrotic yellow vein virus types containing RNA 5 and its comparison with conventional RT-PCR. Journal of Virological Methods123(1), 73-80.
Izadpanah, K., Hashemi, P., Kamran, R., Pakniat, M., Sahandpour, A., & Masumi, M. (1996). Widespread occurrence of rhizomania-like disease of sugarbeet in Fars. Iranian Journal of Plant Pathology32(3/4).
Junxi, J., Jingfeng, Z., Shaochen, C., Dajin, Y., Jialin, Y., Zhunan, C., & Yi, L. (1999). Transmission of Beet black scorch virus by Olpidium brassicae. Acta Agriculturae Universitatis Jiangxiensis21(4), 525-528.
Keskin, B. (1964). Polymyxa betae n.sp., ein Parasit in den Wurzeln von Beta vulgaris Tournefort, besonders während der Jugendentwicklung der Zuckerrübe. Archiv. für Mikrobiologie. 49, 348–374.
Koenig, R., & Valizadeh, J. (2008). Molecular and serological characterization of an Iranian isolate of Beet black scorch virusArchives of Virology153(7), 1397-1400.
Kuszala, M., Ziegler, V., Bouzoubaa, S., Richards, K., Putz, C., Guilley, H., & Jonard, G. (1986). Beet necrotic yellow vein virus: different isolates are serologically similar but differ in RNA composition. Annals of Applied Biology109(1), 155-162.
Lee, J. S., Cho, W. K., Choi, H. S., & Kim, K. H. (2011). RT-PCR detection of five quarantine plant RNA viruses belonging to Potyand Tospoviruses. The Plant Pathology Journal27(3), 291-296.
Lennefors, B. L. (2006). Molecular breeding for resistance to rhizomania in sugar beets (Vol. 2006, No. 2006: 106).
Lennefors, B. L., Lindsten, K., & Koenig, R. (2000). First record of A and B type Beet necrotic yellow vein virus in sugar beets in Sweden. European Journal of Plant Pathology106(2), 199-201.
Liu, H. Y., Sears, J. L., & Lewellen, R. T. (2005). Occurrence of resistance-breaking Beet necrotic yellow vein virus of sugar beet. Plant Disease89(5), 464-468.
Liu, J., & Xian, H. (1995). Preliminary report on Beet black scorch virusChina Sugar Beet3, 30-31.
McGrann, G. R., Grimmer, M. K., MUTASA‐GÖTTGENS, E. S., & Stevens, M. (2009). Progress towards the understanding and control of sugar beet rhizomania disease. Molecular plant pathology10(1), 129-141.
Mehrvar, M. (2009).Diversity of soil-borne sugar beet viruses in Iran. (Doctoral dissertation,Ph. D. thesis, UCL, Louvain-la-Neuve, Belgium). https://dial.uclouvain.be/pr/boreal/object/boreal:28752/datastream/PDF_01/view.
Mehrvar, M., & Bragard, C. (2011). Iranian diversity of Beet black scorch virus and satellite. Proceedings of the Eighth Symposium of the International Working Group on Plant Viruses with Fungal Vectors, Louvain-La-Neuve, Belgium, 6-8 July, 2011 (pp. 41-46).
Meunier, A., Schmit, J. F., Stas, A., Kutluk, N., & Bragard, C. (2003). Multiplex reverse transcription-PCR for simultaneous detection of Beet necrotic yellow vein virus, Beet soilborne virus, and Beet virus Q and their vector Polymyxa betae Keskin on sugar beet. Applied and Environmental Microbiology69(4), 2356-2360.
Morris, J., Clover, G. R. G., Harju, V. A., Hugo, S. A., & Henry, C. M. (2001). Development of a highly sensitive nested RT-PCR method for Beet necrotic yellow vein virus detection. Journal of Virological Methods95(1-2), 163-169.
Mumford, R. A., Walsh, K., Barker, I., & Boonham, N. (2000). Detection of Potato mop top virus and Tobacco rattle virus using a multiplex real-time fluorescent reverse-transcription polymerase chain reaction assay. Phytopathology90(5), 448-453.
Nielsen, S. L., Nicolaisen, M., Scheel, C., & Dinesen, I. G. (2001). First record of Beet necrotic yellow vein virus in Denmark. Plant Disease85(5), 559-559.
Norouzi, P., Sabzehzari, M., & Zeinali, H. (2015). Efficiency of some molecular markers linked to rhizomania resistance gene (Rz1) for marker assisted selection in sugar beet. Journal of crop science and biotechnology18(5), 319-323.
Payne, P. A., & Asher, M. J. C. (1990). The incidence of Polymyxa betae and other fungal root parasites of sugar‐beet in Britain. Plant Pathology39(3), 443-451.
Peltier, C., Hleibieh, K., Thiel, H., Klein, E., Bragard, C. & Gilmer, D. (2008). Molecular biology of the Beet necrotic yellow vein virus. Plant Viruses, 2, 14–24.
Ratti, C., Clover, G. R., Autonell, C. R., Harju, V. A., & Henry, C. M. (2005). A multiplex RT-PCR assay capable of distinguishing Beet necrotic yellow vein virus types A and B. Journal of Virological Methods124(1-2), 41-47.
Rush, C. M. (2003). Ecology and epidemiology of benyviruses and plasmodiophorid vectors. Annual Review of Phytopathology41(1), 567-592.
Samiei, A., & Mehrvar, M. (2018). Genetic diversity and distribution of Beet black scorch virus in Iran. Journal of Iranian Plant Protection Research,31(3), 540-547.
Shen, R., & Miller, W. A. (2007). Structures required for poly (A) tail-independent translation overlap with, but are distinct from, cap-independent translation and RNA replication signals at the 3′ end of Tobacco necrosis virus RNA. Virology358(2), 448-458.
Sohi, H., & Maleki, M. (2004). Evidence for presence of types A and B of Beet necrotic yellow vein virus (BNYVV) in Iran. Virus Genes29(3), 353-358.
Soltani, I. J., Mehrvar, M., Zakiaghl, M., Mahmoudi, S. B., & Salati, M. (2019). Detection of Beet black scorch virus and other Associated Soil-borne Viruses and determining some of their Molecular Aspects. Journal Of Plant Protection. Vol. 33(3), 245-258.
Schirmer, A., Link, D., Cognat, V., Moury, B., Beuve, M., Meunier, A., & Lemaire, O. (2005). Phylogenetic analysis of isolates of Beet necrotic yellow vein virus collected worldwide. Journal of General Virology86(10), 2897-2911.
Tamada, T. 1975. Descriptions of plant viruses. No. 144. CMI/AAB. 4 pp.
Tamada, T., and Kondo, H. (2013). Biological and genetic diversity of
plasmodiophorid-transmitted viruses and their vectors. J. Gen. Plant Pathol.
79, 307–320.
Tamada, T., Uchino, H., Kusume, T., & Saito, M. (1999). RNA3 deletion mutants of Beet necrotic yellow vein virus do not cause rhizomania disease in sugar beets. Phytopathology89(11), 1000-1006.
Viswanathan, R., Balamuralikrishnan, M., & Karuppaiah, R. (2008). Duplex-reverse transcription-polymerase chain reaction (D-RT-PCR)-a technique for the simultaneous detection of viruses causing sugarcane mosaic. Sugar Tech10(1), 81-86.
Watpade, S., Raigond, B., Pramanick, K. K., Sharma, N., Handa, A., & Sharma, U. (2013). Simultaneous detection of Apple Chlorotic Leaf Spot Virus and Apple mosaic virus in crab apples and apple rootstocks by duplex RT-PCR. Scientia Horticulturae164, 88-93.
Weiland, J. J., Larson, R. L., Freeman, T. P., & Edwards, M. C. (2006). First report of Beet black scorch virus in the United States. Plant Disease90(6), 828-828.
Weiland, J. J., Van Winkle, D., Edwards, M. C., Larson, R. L., Shelver, W. L., Freeman, T. P., & Liu, H. Y. (2007). Characterization of a US isolate of Beet black scorch virus. Phytopathology, 97(10), 1245-1254.
Yilmaz, N. D. K. (2016). Identification of strain types of some Beet necrotic yellow vein virus isolates determined in Northern and Central Parts of Turkey. Eurasian Journal of Soil Science5(3), 241-248.
 © 2023 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/.