Promiscuously replication of betasatellites; in silico study of interaction between betasatellite iteron-like sequence and Rep of helper geminiviruses

نوع مقاله : علمی پژوهشی -انگلیسی

نویسندگان

Assistant Professor, Plant Protection Department, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

چکیده

Betasatellites, single-stranded circular DNAs, are multifunctional agents associated with monopartite begomoviruses (family Geminiviridae), that act as symptoms determinant. Begomoviruses are replicated by species-specific interactions between the viral replication-associated protein (Rep) and iteron motifs at the upstream of the origin of replication (ori). In contrast, promiscuous replication of betasatellites could be supported by different geminiviruses. In this study, the interaction of Cotton leaf curl Multan virus (CLCuMuV, genus Begomovirus) and Beet curly top virus (BCTV, genus Curtovirus) encoded Rep proteins with the iteron-like sequence of betasatellite, 5́-GAGGACC-3́, was investigated using in silico approaches. Nucleotide sequences of two Rep-encoding genes were obtained from the GenBank database, NCBI. Physicochemical characteristics of Rep proteins and their secondary and tertiary structures were predicted using the SOMPA tool and I-TASSER servers, respectively. The binding affinity of the best-predicted models of both proteins toward betasatellite iteron-like sequence was assessed using Docking simulations. The results represented reliable tertiary structures and showed structural similarity for Rep of different analyzed geminiviruses. Cluster analysis of HADDOCK revealed more total binding energy for CLCuMuV Rep toward the iteron-like sequence than BCTV complex. These in silico results confirmed the more trans-replication activity for relative geminiviruses in replication of betasatellite genomes. They emphasized the role of iteron-like sequences in interactions with the Rep of helper geminiviruses. Furthermore, targeting of identified activate sites within Rep protein structures to interact with betasatellite genomes could be considered as a control measure for begomovirus/betasatellite complexes.

کلیدواژه‌ها


عنوان مقاله [English]

Promiscuously replication of betasatellites; in silico study of interaction between betasatellite iteron-like sequence and Rep of helper geminiviruses

نویسندگان [English]

  • S. Tabein
  • S. A. Hemmati
Assistant Professor, Plant Protection Department, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3398-3402.
Bananej, K., Shafiq, M., & Shahid, M. S. (2021). Association of cotton leaf curl Gezira virus with tomato leaf curl betasatellite infecting Carica papaya in Iran. Australasian Plant Disease Notes16, 4.
Behjatnia, S. A. A., Dry, I. B., & Rezaian, M. A. (1998). Identification of the replication-associated protein binding domain within the intergenic region of tomato leaf curl geminivirus. Nucleic Acids Research, 26, 925-931.
Briddon, R. W., & Stanley, J. (2006). Subviral agents associated with plant single-stranded DNA viruses. Virology, 344, 198-210.
Briddon, R. W., Ghabrial, S., Lin, N.-S., Palukaitis, P., Scholthof, K. B. G., & Vetten, H. J. (2012). “Satellites and other virus-dependent nucleic acids,” in Virus Taxonomy - Ninth Report of the International Committee on Taxonomy of Viruses, eds A. M. Q. King, E. Lefkowitz, M. J. Adams, and E. B. Carstens (New York City, NY: Associated Press), 1209-1219.
Brown, J. K., Fauquet, C. M., Briddon, R. W., Zerbini, F. M., Moriones, E., & Navas-Castillo, J. (2012). Geminiviridae. In: Virus taxonomy, ninth report of the international committee on taxonomy of viruses, pp 351-373. Edited by A. M. Q. King, M. J., Adams, E. B., Carstens and E. J. Lefkowitz. London, Elsevier/Academic Press.
de Beer, T. A. P., Berka, K., Thornton, J. M., & Laskowski, R. A. (2014). PDBsum additions. Nucleic Acids Research, 42, 292-296.
de Vries, S. J., van Dijk, M., & Bonvin, A. M. J. (2010). The HADDOCK web server for data-driven biomolecular docking. Nature Protocols, 5, 883-897.
Dry, I. B., Krake, L. R., Rigden, J. E., & Rezaian, M. A. (1997). A novel subviral agent associated with a geminivirus: the first report of a DNA satellite. Proceedings of the National Academy of Sciences, 94, 7088-7093. doi.org/10.1073/pnas.94.13.7088.
Eini, O., Behjatnia, S. A., Dogra, S., Dry, I. B., Randles, J. W., & Rezaian, M. A. (2009). Identification of sequence elements regulating promoter activity and replication of a monopartite begomovirus-associated DNA betasatellite. Journal of General Virology, 90, 253-260. doi.org/10.1099/vir.0.002980-0.
Eini, O., & Behjatnia, S. A. (2016). The minimal sequence essential for replication and movement of cotton leaf curl Multan betasatellite DNA by a helper virus in plant cells. Virus Genes, 52, 679-687. doi.org/10 .1007/s11262-016-1354-6.
Fiallo-Olivé, E., Lett, J. M., Martin, D. P., Roumagnac, P., Varsani, A., Zerbini, F. M., & Navas-Castillo, J. (2021). ICTV virus taxonomy profile: geminiviridae 2021. Journal of General Virology102, 001696.
Hemmati, S. A. (2022). Identification of novel antagonists of the ecdysone receptor from the desert locust (Schistocerca gregaria) by in silico modelling. Plant Protection (Scientific Journal of Agriculture), 44(4), 135-146. (In Farsi with English summery). https://doi.org/ 10.22055/ppr.2021.17221
Idicula-Thomas, S., & Balaji, P. V. (2005). Understanding the relationship between the primary structure of proteins and its propensity to be soluble on overexpression in Escherichia coli. Protein Science, 14, 582-592.
Jeske, H., Lütgemeier, M., & Preiß, W. (2001). DNA forms indicate rolling circle and recombination‐dependent replication of Abutilon mosaic virus. The EMBO Journal20, 6158-6167.
Kharazmi S, Behjatnia SAA, Hamzehzarghani H & Niazi A (2012). Cotton leaf curl Multan betasatellite as a plant gene delivery vector trans-activated by taxonomically diverse geminiviruses. Archives of Virology, 157, 1269-1279.
Kil, E. J., Kim, S., Lee, Y. J., Byuan, H. S., Park, J., Seo, H., Kim, C. S., Shim, J. K., Lee, J. H., & Kim, J. K., et al. (2016). Tomato yellow leaf curl virus (TYLCV‐IL): A seed transmissible geminivirus in tomatoes. Scientific Reports, 6, 19013.
Kim, J., Kil, E. J., Kim, S., Seo, H., Byun, H. S., Park, J., Chung, M. N., Kwak, H. R., Kim, M. K., & Kim, C. S., et al. (2015). Seed transmission of sweet potato leaf curl virus in sweet potato (Ipomoea batatas). Plant Pathology, 64, 1284-1291.
Kon, T., Rojas, M. R., Abdourhamane, I. K., & Gilbertson, R. L. (2009). Roles and interactions of begomoviruses and satellite DNAs associated with okra leaf curl disease in Mali, West Africa. Journal of General Virology, 90, 1001-1013. doi.org/10.1099/vir.0.008102-0.
Kurkcuoglu, Z., Koukos, P. I., Citro, N., Trellet, M. E., Rodrigues, J. P. G. L. M., Moreira, I. S., Roel-Touris, J., Melquiond, A. S., Geng, C., Schaarschmidt, J., & Xue, L. C. (2018). Performance of HADDOCK and a simple contact-based protein–ligand binding affinity predictor in the D3R Grand Challenge 2. Journal of Computer-Aided Molecular Design, 32, 175-185.
Li, D., Behjatnia, S. A., Dry, I. B., Randles, J. W., Eini, O., & Rezaian, M. A. (2007). Genomic regions of tomato leaf curl virus DNA satellite required for replication and for satellite-mediated delivery of heterologous DNAs. Journal of General Virology, 88, 2073-2077. doi.org/10.1099/vir.0.82853-0.
Lin, B. C., Behjatnia S. A. A., Dry, I. B., Randles, J. W., & Rezaian M. A. (2003). High-affinity Rep-binding is not required for the replication of a geminivirus DNA and its satellite. Virology, 305, 353-363.
Lozano, G., Trenado, H. P., Fiallo-Olve, E., Chirinos, D., Geraud-Pouey, F., Briddon, R., & Navas-Castillo, J. (2016). Characterization of Non-coding DNA Satellites Associated with Sweepoviruses (Genus Begomovirus, Geminiviridae) – Definition of a Distinct Class of Begomovirus-Associated Satellites. Frontiers in Microbiology, 7, 162.
Mosharaf, N., Tabein, S., Behjatnia, S. A. A., & Safi, A. (2020a). Role of betasatellites in interaction of viruses with plants. Plant Pathology Science, 9, 78-90.
Mosharaf, N., Tabein, S., Behjatnia, S. A. A., & Accotto, G. P. (2020b). Identification of Cotton leaf curl Multan virus, a new threating Begomovirus in Iran. Iranian Journal of Plant Pathology, 56, 217-218.
Mubin, M., Briddon, R. W., & Mansoor, S. (2009). Diverse and recombinant DNA betasatellites are associated with a begomovirus disease complex of Digera arvensis, a weed host. Virus Research, 142, 208- 212.
Nawaz-ul-Rehman, M. S., Mansoor, S., Briddon, R., & Fauquet, C. M. (2009). Maintenance of an Old World Betasatellite by a New World Helper Begomovirus and Possible Rapid Adaptation of the Betasatellite. Journal of Virology, 83, 9347-9355.
Navas‐Castillo, J., Fiallo‐Olivé, E., & Sánchez‐Campos, S. (2011). Emerging virus diseases transmitted by whiteflies. Annual Review of Phytopathology, 49, 219-248.
Pawlowski, M., Gajda, M. J., Matlak, R., & Bujnicki, J. (2008). MetaMQAP: A meta-server for the quality assessment of protein models. BMC Bioinformatics, 9, 403. doi:10.1186/1471-2105-9-403.
Pettersen, E. F., Goddard T. D., Huang, C. C., Couch, G. S., Greenblat, D. M., Meng, E, C., & Ferrin, T. E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605-1612.
Roy, S. (2013). Genomics and Bioinformatics in Entomology. Entomology, Ornithology & Herpetology, 2, e107.
Sangeetha, B., Malathi, V. G., Alice, D., Suganthy, M., & Renukadevi, P. (2018). A distinct seed‐transmissible strain of Tomato leaf curl New Delhi virus infecting Chayote in India. Virus Research, 258, 81-91.
Saunders, K., Briddon, R. W., & Stanley, J. (2008). Replication promiscuity of DNA satellites associated with monopartite begomoviruses; deletion mutagenesis of the Ageratum yellow vein virus DNA_ satellite localizes sequences involved in replication. Journal of General Virology, 89, 3165-3172. doi .org/10.1099/vir.0.2008/003848-0.
Tabein, S., & Hemmati, S. A. (2022). Into the interference between Beet curly top Iran virus and Beet curly top virus: in silico evaluation of the role of the interaction between Rep and the nonanucleotide motif. Journal of Crop Protection, 11, 287-300.
Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673-4680.
Xu, X., Qian, Y., Wang, Y., Li, Z., & Zhou, X. (2019). Iterons Homologous to Helper Geminiviruses Are Essential for Efficient Replication of Betasatellites. Journal of Virology, 93, doi.org/10.1128/JVI.01532-18.
Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER Suite: protein structure and function prediction. Nature Methods, 12, 7-8.
Zhang, Y. (2008). I-TASSER server for protein 3D structure predictions. BMC Bioinformatics, 9, 40. doi.org/10.1186/1471-2105-9-40.
Zhang, T., Xu, X., Huang, C., Qian, Y., Li, Z., & Zhou, X. (2016). A Novel DNA Motif Contributes to Selective Replication of a Geminivirus-Associated Betasatellite by a Helper Virus-Encoded Replication-Related Protein. Journal of Virology, 90, 2077-2089.
Zengyou, H. (2015). Data mining for bioinformatics applications: Woodhead Publishing.
Zhou X (2013) Advances in understanding begomovirus satellites. Annual Review of Phytopathology, 51, 357-381.
 © 2023 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/