Abdelshafy Mohamad, O. A., Ma, J.-B., Liu, Y.-H., Zhang, D., Hua, S., Bhute, S., Hedlund, B. P., Li, W.-J., & Li, L. (2020). Beneficial endophytic bacterial populations associated with medicinal plant
Thymus vulgaris alleviate salt stress and confer resistance to
Fusarium oxysporum.
Frontiers in plant science,
11, 47.
https://doi.org/10.3389/fpls.2020.00047.
Aebi, H. (1984). Catalase in vitro. In Methods in enzymology (Vol. 105, pp. 121-126).
Afzal, I., Shinwari, Z. K., Sikandar, S., & Shahzad, S. (2019). Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological research, 221, 36-49. https://doi: 10.1016/j.micres.2019.02.001.
Alaylar, B. (2022). Isolation and characterization of culturable endophytic plant growth-promoting Bacillus species from Mentha longifolia L. Turkish Journal of Agriculture and Forestry, 46(1), 73-82. https://doi: 10.3906/tar-2109-24.
Ali, B., Hafeez, A., Javed, M. A., Afridi, M. S., Abbasi, H. A., Qayyum, A., Batool, T., Ullah, A., Marc, R. A., & Al Jaouni, S. K. (2022). Role of endophytic bacteria in salinity stress amelioration by physiological and molecular mechanisms of defense: A comprehensive review. South African Journal of Botany, 151, 33-46. https://doi.org/10.1016/j.sajb.2022.09.036.
Al-Maawali, S. S., Al-Sadi, A. M., Ali Khalifa Alsheriqi, S., Nasser Al-Sabahi, J., & Velazhahan, R. (2021). The potential of antagonistic yeasts and bacteria from tomato phyllosphere and fructoplane in the control of Alternaria fruit rot of tomato. All Life, 14(1), 34-48.
https://doi: 10.1080/26895293.2020.1858975.
Ansari, M., Taghavi, S. M., Hamzehzarghani, H., Valenzuela, M., Siri, M. I., & Osdaghi, E. (2019). Multiple introductions of tomato pathogen Clavibacter michiganensis subsp. michiganensis into Iran as revealed by a global-scale phylogeographic analysis. Applied and Environmental Microbiology, 85(24), e02098-19. https://doi.org/10.1128/AEM.02098-19.
Bacon, C. W., & Hinton, D. M. (2006). Bacterial endophytes: the endophytic niche, its occupants, and its utility. In Plant-associated bacteria (pp. 155-194). Springer, Dordrecht. 10.1007/978-1-4020-4538-7_5.
Blee, K. A., Choi, J. W., O'Connell, A. P., Schuch, W., Lewis, N. G., & Bolwell, G. P. (2003). A lignin-specific peroxidase in tobacco whose antisense suppression leads to vascular tissue modification. Phytochemistry, 64(1), 163-176. https://doi: 10.1016/s0031-9422(03)00212-7.
Boudyach, E. H., Fatmi, M., Akhayat, O., Benizri, E., & Aoumar, A. A. B. (2001). Selection of antagonistic bacteria of Clavibacter michiganensis subsp. michiganensis and evaluation of their efficiency against bacterial canker of tomato.
Biocontrol Science and Technology,
11(1), 141-149.
https://doi.org/10.1080/09583150020029817.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3.
Dasa, I., Pandaa, M. K., Rathb, C. C., & Tayungc, K. (2017). Bioactivities of bacterial endophytes isolated from leaf tissues of
Hyptis suaveolens against some clinically significant pathogens.
Journal of Applied Pharmaceutical Science, 7(8), 131-136. https://doi:
10.7324/JAPS.2017.70818.
Egamberdieva, D., Wirth, S., Behrendt, U., Ahmad, P., & Berg, G. (2017). Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes.
Frontiers in microbiology,
8, 199.
https://doi: 10.3389/fmicb.2017.00199.
Egert, M., & Tevini, M. (2002). Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum). Environmental and Experimental Botany, 48(1), 43-49.
https://doi: 10.1016/S0098-8472(02)00008-4.
Eichenlaub, R., & Gartemann, K.-H. (2011). The Clavibacter michiganensis subspecies: molecular investigation of gram-positive bacterial plant pathogens. Annual Review of Phytopathology, 49(1). https://doi: 10.1146/annurev-phyto-072910-095258.
Frank, J.A., Reich, C.I., Sharma, S., Weisbaum, J.S., Wilson, B.A. and Olsen, G.J. (2008). Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes.
Applied and environmental microbiology,
74(8), pp.2461- 2470.
https://doi: 10.1128/AEM.02272-07.
Gartemann, K.-H., Abt, B., Bekel, T., Burger, A., Engemann, J., Flügel, M., Gaigalat, L., Goesmann, A., Gräfen, I., & Kalinowski, J. r. (2008). The genome sequence of the tomato-pathogenic actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382 reveals a large island involved in pathogenicity. Journal of Bacteriology, 190(6), 2138-2149. https:// doi: 10.1128/JB.01595-07.
Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry, 48(12), 909-930. https:// doi: 10.1016/j.plaphy.2010.08.016.
Hallmann, J., Quadt-Hallmann, A., Mahaffee, W., & Kloepper, J. (1997). Bacterial endophytes in agricultural crops.
Canadian journal of microbiology, 43(10), 895-914.
https://doi: 10.1139/m97-13.
Hernández-Pacheco, C. E., del Carmen Orozco-Mosqueda, M., Flores, A., Valencia-Cantero, E., & Santoyo, G. (2021). Tissue-specific diversity of bacterial endophytes in Mexican husk tomato plants (
Physalis ixocarpa Brot. ex Horm.), and screening for their multiple plant growth-promoting activities.
Current Research in Microbial Sciences,
2, 100028.
https://doi: 10.1016/j.crmicr.2021.100028.
Herzog, V., & Fahimi, H. D. (1973). A new sensitive colorimetric assay for peroxidase using 3, 3′-diaminobenzidine as hydrogen donor. Analytical biochemistry, 55(2), 554-562. https:// doi: 10.1016/0003-2697(73)90144-9.
Hassanein, M. A. F., & Al-Amari, A. (2021). Endophytic Bacteria as Apotential Agent for Control of Tomato Wilt Caused by Fusarium oxysporum f. sp Lycopersici. Annals of the Romanian Society for Cell Biology, 3119-3132. 10.3389/fmicb.2021.731764. eCollection 2021.
Jacob, J., Krishnan, G. V., Thankappan, D., & Amma, D. K. B. N. S. (2020). Endophytic bacterial strains induced systemic resistance in agriculturally important crop plants. In Microbial Endophytes (pp. 75-105). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-819654-0.00004-1.
Jang, H., Kim, S. T., & Sang, M. K. (2022). Suppressive Effect of Bioactive Extracts of Bacillus sp. H8-1 and Bacillus sp. K203 on Tomato Wilt Caused by Clavibacter michiganensis subsp. michiganensis. Microorganisms, 10(2), 403. https:// doi: 10.3390/microorganisms10020403.
Knapp, S., & Peralta, I. E. (2016). The tomato (Solanum lycopersicum L., Solanaceae) and its botanical relatives. The tomato genome, 7-21. 10.1007/978-3-662-53389-5_2.
Kawaguchi, A., & Tanina, K. (2014). Genetic groups of
Clavibacter michiganensis subsp.
michiganensis identified by DNA fingerprinting and the effects of inoculation methods on disease development.
European journal of plant pathology,
140(3), 399-406.
https://doi: 10.1007/s10658-014-0475-9.
Lanna-Filho, R., Souza, R. M., Magalhães, M. M., Villela, L., Zanotto, E., Ribeiro-Júnior, P. M., & Resende, M. L. (2013). Induced defense responses in tomato against bacterial spot by proteins synthesized by endophytic bacteria. Tropical Plant Pathology, 38, 295-302.https://doi.org/10.1590/S1982-56762013005000011.
Madhurama, G., Sonam, D., Urmil, P. G., & Ravindra, N. K. (2014). Diversity and biopotential of endophytic actinomycetes from three medicinal plants in India.
African Journal of Microbiology Research, 8(2), 184-191.
https://doi: 10.5897/AJMR2012.2452.
Mandal, S. (2010). Induction of phenolics, lignin and key defense enzymes in eggplant (
Solanum melongena L.) roots in response to elicitors.
African Journal of Biotechnology, 9(47), 8038-8047.
https://doi:
10.5897/AJB10.984.
Mazarei, M., & Orumchi, S. (1993). Investigation of bacterial canker of tomato in West Azarbaidjan. In Proceedings of the 11th Plant Protection Congress of Iran 28 Aug.-2 Sep. 1993 Rasht.
Meng, X. J., Medison, R. G., Cao, S., Wang, L. Q., Cheng, S., Tan, L. T., ... & Zhou, Y. (2023). Isolation, identification, and biocontrol mechanisms of endophytic Burkholderia vietnamiensis C12 from Ficus tikoua Bur against
Rhizoctonia solani.
Biological Control, 178, 105132.
https://doi.org/10.1016/j.biocontrol.2022.105132.
M'piga, P., Belanger, R., Paulitz, T., & Benhamou, N. (1997). Increased resistance
to Fusarium oxysporumf. sp.
radicis-lycopersiciin tomato plants treated with the endophytic bacterium
Pseudomonas fluorescensstrain 63-28.
Physiological and molecular plant pathology,
50(5), 301-320.
https://doi: 10.1006/pmpp.1997.0088.
Nawed, A., & Chandra, R. (2015). Endophytic bacteria: optimizaton of isolation procedure from various medicinal plants and their preliminary characterization. Asian Journal of Pharmaceutical and Clinical Research, 8(4), 233-238.
Omomowo, O. I., & Babalola, O. O. (2019). Bacterial and fungal endophytes: tiny giants with immense beneficial potential for plant growth and sustainable agricultural productivity. Microorganisms, 7(11), 481. https:// doi: 10.3390/microorganisms7110481.
Ordookhani, K., Sharafzadeh, S., & Zare, M. (2011). Influence of PGPR on growth, essential oil and nutrients uptake of sweet basil. Advances in Environmental Biology, 5(4), 672-677.
Panigrahi, S., Mohanty, S., & Rath, C. (2020). Characterization of endophytic bacteria Enterobacter cloacae MG00145 isolated from Ocimum sanctum with Indole Acetic Acid (IAA) production and plant growth promoting capabilities against selected crops.
South African Journal of Botany,
134, 17-26.
https://doi.org/10.1016/j.sajb.2019.09.017.
Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and environmental safety, 60(3), 324-349. https:// doi: 10.1016/j.ecoenv.2004.06.010.
Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S., & Bakker, P. A. (2014). Induced systemic resistance by beneficial microbes. Annual review of phytopathology, 52, 347-375. https:// doi: 10.1146/annurev-phyto-082712-102340. Epub 2014 Jun 2.
Ryan, A. D., Kinkel, L. L., & Schottel, J. L. (2004). Effect of pathogen isolate, potato cultivar, and antagonist strain on potato scab severity and biological control.
Biocontrol Science and Technology, 14(3), 301-311.
https://doi/abs/10.1080/09583150410001665187.
Sahu, P. K., Singh, S., Gupta, A. R., Gupta, A., Singh, U. B., Manzar, N., Bhowmik, A., Singh, H. V., & Saxena, A. K. (2020). Endophytic
bacilli from medicinal-aromatic perennial
Holy basil (
Ocimum tenuiflorum L.) modulate plant growth promotion and induced systemic resistance against
Rhizoctonia solani in rice (
Oryza sativa L.).
Biological control, 150, 104353.
https://doi.org/10.1016/j.biocontrol.2020.104353.
Safara, S., Harighi, B., Bahramnejad, B. and Ahmadi, S. (2022). Antibacterial activity of endophytic bacteria against sugar beet root rot agent by volatile organic compound production and induction of systemic resistance. Frontiers in Microbiology, 13. https:// doi: 10.3389/fmicb.2022.921762.
Sánchez-Pérez, B. N., Zenteno-Rojas, A., Rincón-Molina, C. I., Ruíz-Valdiviezo, V. M., Gutiérrez-Miceli, F. A., Vences-Guzmán, M. A., Villalobos-Maldonado, J. J., & Rincón-Rosales, R. (2020). Rhizosphere and endophytic bacteria associated to Ocimum basilicum L. with decaclorobiphenyl removal potential. Water, Air, & Soil Pollution, 231(3), 1-15. https://doi.org/10.1007/s11270-020-04481-6.
Shahrajabian, M. H., Sun, W., & Cheng, Q. (2020). Chemical components and pharmacological benefits of Basil (
Ocimum basilicum): A review.
International Journal of Food Properties,
23(1), 1961-1970.
https://doi.org/10.1080/10942912.2020.1828456.
Seevers, P., Daly, J., & Catedral, F. (1971). The role of peroxidase isozymes in resistance to wheat stem rust disease.
Plant physiology, 48(3), 353-360.
https://doi.org/10.1104/pp.48.3.353.
Sen, Y., van der Wolf, J., Visser, R. G., & van Heusden, S. (2015). Bacterial canker of tomato: current knowledge of detection, management, resistance, and interactions. Plant Disease, 99(1), 4-13. https:// doi: 10.1094/PDIS-05-14-0499-FE.
Sharma, M., Sood, G., & Chauhan, A. (2021). Bioprospecting beneficial endophytic bacterial communities associated with
Rosmarinus officinalis for sustaining plant health and productivity.
World Journal of Microbiology and Biotechnology,
37(8), 1-17.
https://doi.org/10.1007/s11274-021-03101-7.
Shternshis, M., Beljaev, A., Shpatova, T., Bokova, J., & Duzhak, A. (2002). Field testing of Bacticide®, Phytoverm® and Chitanase for control of the raspberry midge blight in Siberia. Biological Control, 47(6), 697-706. https://doi.org/10.1023/A:1020574914831.
Simova-Stoilova, L., Demirevska, K., Petrova, T., Tsenov, N., & Feller, U. (2008). Antioxidative protection in wheat varieties under severe recoverable drought at seedling stage. Plant, Soil and Environment, 54(12), 529-36.
Yanti, Y. (2019). Involvement of Jasmonic Acid in the Induced Systemic Resistance of Tomato against Ralstonia syzigii subsp. indonesiensis by Indigenous Endophyte Bacteria. In IOP Conference Series: Earth and Environmental Science (Vol. 347, No. 1, p. 012024). IOP Publishing. 10.1088/1755-1315/347/1/012024.
Yarte, M. E., Gismondi, M. I., Llorente, B. E., & Larraburu, E. E. (2022). Isolation of endophytic bacteria from the medicinal, forestal and ornamental tree Handroanthus impetiginosus.
Environmental Technology, 43(8), 1129-1139.
https://doi.org/10.1080/09593330.2020.1818833.
Wang, H., Liu, R., You, M. P., Barbetti, M. J., & Chen, Y. (2021). Pathogen biocontrol using plant growth-promoting bacteria (PGPR): Role of bacterial diversity. Microorganisms, 9(9), 1988. https:// doi: 10.3390/microorganisms9091988.
Wu, W., Chen, W., Liu, S., Wu, J., Zhu, Y., Qin, L., & Zhu, B. (2021). Beneficial relationships between endophytic bacteria and medicinal plants. Frontiers in plant science,
12, 646146. https://doi:
10.3389/fpls.2021.646146.
© 2023 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/.