شناسایی ژن gsh303 رمزگذار پروتئین نامزد کارکرد تغییرگری در برهمکنش Ascochyta rabiei با گیاه نخود

نوع مقاله : علمی پژوهشی-فارسی

نویسندگان

1 دانشجوی دکتری گروه بیوتکنولوژی و به‌نژادی گیاهان زراعی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 استادیار، پژوهشکده علوم گیاهی، دانشگاه فردوسی مشهد، مشهد، ایران

3 دانشیار، گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

پروتئین‌های تغییرگر نقش مهمی در برهمکنش میان قارچ‌های بیمارگر و گیاه میزبان ایفا می‌کنند. شناسایی و بررسی عملکرد پروتئین‌های تغییرگر برای درک ساز وکار بیماری‌زایی، برهمکنش و تعیین راه‌بردهای به‌نژادی برای تولید ارقام مقاوم بسیار مهم است. بیماری برق‌زدگی ناشی از قارچ Ascochyta rabiei یکی از مخرب‌ترین و گسترده‌ترین عامل خسارت‌زا در زراعت نخود در بیشتر مناطق است. شناسایی ژن‌های تغییرگر در این قارچ بر اساس داده‌های ژنومی و بیانی ژن‌های قارچ A. rabiei در شرایط شرایط رشدی مختلف می‌تواند در پیش‌برد برنامه‌های اصلاحی گیاه نخود مورد توجه قرار گیرد. مطالعه حاضر با بررسی شاخص‌های عمومی پروتئین‌های تغییرگر و نحوه القاءپذیری آنها توانسته است ژن gsh303 رمزگذار پروتئین نامزد کارکرد تغییرگری در بیماری‌زایی قارچ A. rabiei را شناسایی نماید و حضور آن را در ژنوم پاتوتیپ مختلف (PI، PIII و PVI) قارچ A. rabiei رشد یافته در شرایط آزمایشگاهی تایید نماید و توالی آن‌ها مورد مقایسه قرار دهد. در سطح ترانوشت نیز بیان این ژن در شرایط رشد پاتوتیپ‌های PI، PIII و PVI از قارچ A. rabiei در محیط کشت و همچنین در شرایط برهمکنش با لاین‌های نخود مقاوم (MCC133) و حساس (ILC1929) در زمان 96 ساعت پس از مایه‌زنی مورد بررسی قرار گرفت. ژن‌های حیاتی argapdh و abct به ترتیب مربوط به قارچ A. rabiei و گیاه نخود به عنوان مرجع در نظر گرفته شد. این نتایج نشان داد ترانوشت ژن gsh303 در شرایط رشد در محیط کشت قابل ردیابی نبود ولی در شرایط برهمکنش با گیاه ردیابی شد. در مجموع می‌توان انتظار داشت پروتئین رمزگذاری‌شده توسط این ژن در شرایط بیماری‌زایی قارچ روی گیاه به شکل یک تغییرگر عمل کند. به عنوان یک نامزد، نقش تغییرگری این پروتئین باید در مطالعات تکمیلی مورد بررسی قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Detection of the gsh303 Gene Encoding a Candidate Protein with Effector Function during the Interaction between Ascochyta rabiei and Chickpea

نویسندگان [English]

  • M. Hasani 1
  • F. Shokouhifar 2
  • M. Mamarabadi 3
1 Ph.D. student, Department of Plant Biotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 Assistant Professor, Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
3 Associate Professor, Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Background and Objectives
In the context of pathogenicity in host plants, many fungal pathogens produce and secrete a range of small molecules, including proteins and secondary metabolites. Some of these molecules are known as pathogenic factors, and they play a specific role in manipulating interactions between the pathogen and host plants. Typically, these agents are referred to as effectors. Effector proteins are pivotal in the pathogenicity process of phytopathogenic fungi and their colonization of host plants. Identifying and analyzing the functions of effector proteins are essential steps in understanding pathogenicity mechanisms, symbiosis, and plant defense strategies.
Ascochyta blight, caused by the fungus Ascochyta rabiei, stands as one of the primary limiting factors in chickpea cultivation, presenting a challenge wherever this plant is grown. The availability of genomic and transcriptomic data for A. rabiei, both in vitro and during its interaction with the plant, facilitates the identification of virulence and effector genes. In this study, our primary objective was to investigate the gsh303 gene as a candidate effector in different pathotypes (I, III, and VI) of A. rabiei.
Materials and methods
Genomic data associated with A. rabiei were obtained from the NCBI database. We utilized SignalP v4.1, SecretomP v2.0, TMHM v2.0, and EffectorP v3.0 software for the screening of candidate effector proteins, ultimately identifying the gsh303 gene as a potential effector gene. We also conducted an investigation into the presence of homologous and orthologous sequences.
Subsequently, specific primers were designed for the gsh303 gene, and we tracked its presence in different pathotypes of A. rabiei. This was achieved by performing polymerase chain reaction (PCR) both in vitro and during the interaction between the plant and pathogen, encompassing both the genome and transcriptome levels.
Results
The findings of our study indicate that the nucleotide sequence of the gsh303 gene comprises a single exon without any introns. To detect the gsh303 gene, we designed PSh303F/R specific primers based on its upstream and downstream regions. A 599-base pair fragment was successfully amplified by PCR, confirming the presence of the gene in the genomes of all three pathotypes.
While the expression of the gapdh housekeeping gene was verified at the transcriptome level in the culture medium, we were unable to confirm the detection of the gsh303 gene at the transcript level. To further investigate the expression of this gene during the plant-pathogen interaction, we inoculated two chickpea cultivars, one resistant (MCC133) and one sensitive (ILC1929), with three pathotypes of A. rabiei (I, III, and VI). After 96 hours of inoculation, we collected samples from the inoculated plants for DNA and RNA extraction. Our results from tracking the gsh303 gene during the interaction conditions at both the genome and transcript levels revealed the amplification of 599 bp and 591 bp fragments, respectively.
Discussion
In our current study, we employed bioinformatics methods to predict the gsh303 effector gene and identified it as a candidate effector. Furthermore, we confirmed the presence of this gene in all three pathotypes of A. rabiei under in vitro conditions. Utilizing fungal genomic DNA as a template, a specific band of 599 base pairs was successfully amplified via PCR. Examining the expression pattern of the gsh303 gene in two cultivars infected with pathotypes I, III, and VI of A. rabiei at the transcriptome level revealed consistent expression 96 hours post-inoculation across all three pathotypes.
The identification of effector genes holds promise for the development of resistance genes based on genomic data, paving the way for the production of more resilient cultivars resistant to disease.

کلیدواژه‌ها [English]

  • Ascochyta rabiei pathotypes
  • detection of effector genes
  • regulatory elements of gene expression
  • resistant and sensitive chickpea lines
Anderson, J. P., Sperschneider, J., Win, J., Kidd, B., Yoshida, K., Hane, J., Sauners, D.G., & Singh, K. B. (2017). Comparative secretome analysis of Rhizoctonia solani isolates with different host ranges reveals unique secretomes and cell death inducing effectors. Scientific Reports, 7(1), 10410. https://doi.org/10.1038/s41598-017-10405-y
Carreón-Anguiano, K. G., Islas-Flores, I., Vega-Arreguín, J., Sáenz-Carbonell, L., & Canto-Canché, B. (2020). EffHunter: A tool for prediction of effector protein candidates in fungal  proteomic  databases.  Biomolecules10(5),  712 . https://doi.org/10.3390/biom10050712
De Wit, P. J., Mehrabi, R., Van den Burg, H. A. and Stergiopoulos, I. (2009) Fungal effector proteins: past, present and future. Molecular Plant Pathology, 10, 735-747. https://doi.org/10.1111/j.1364-3703.2009.00591.x
Emanuelsson, O., Brunak, S., Von Heijne, G. and Nielsen, H. (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocols, 2, 953-971. https://doi.org/10.1038/nprot.2007.131
Faris, J. D. and Friesen, T. L. (2020) Plant genes hijacked by necrotrophic fungal pathogens. Current Opinion in Plant Biology, 56, 74-80. doi: 10.1016/j.pbi.2020.04.003.
Felsenstein, J. (1992). Phylogenies from restriction sites: a maximum ‐ likelihood approach. Evolution, 46(1), 159-173. https://doi/10.1111/j.1558-5646.1992.tb01991.x
Firouzmand, H., Toosi, S., Shokouhifar, F., & Mamarabadi, M. (2023). Resistance pattern of a cold tolerant chickpea cultivar (Saral) against different pathotypes of Ascochyta rabiei using an in vitro pathogenicity test method. Australasian  Plant  Pathology, 52, 303–315. https://doi.org/10.1007/s13313-023-00920-0
Fondevilla, S., Krezdorn, N., Rotter, B., Kahl, G., & Winter, P. (2015). In planta identification of putative pathogenicity factors from the chickpea pathogen Ascochyta rabiei by de novo transcriptome sequencing using RNA-Seq and massive analysis of cDNA ends. Frontiers in Microbiology, 6, 1329 . https:// doi: 10.3389/fmicb.2015.01329
Fornes, O., Castro-Mondragon, J. A., Khan, A., Van der Lee, R., Zhang, X., Richmond, P. A., Modi,  B.  P.,  Correard,  S.,  Gheorghe,  M.,  &  Baranašić,  D.  (2020). JASPAR  2020: update  of  the  open-access  database  of  transcription  factor  binding  profiles.  Nucleic  Acids Research, 48(D1), D87-D92 .https://doi.org/10.1093/nar/gkz1001
Gai, Y., Li, L., Liu, B., Ma, H., Chen, Y., Zheng, F., Sun, X., Wang, M., Jiao, C. and Li, H. (2022) Distinct and essential roles of bZIP transcription factors in the stress response and pathogenesis in Alternaria alternata. Microbiological Research, 256, 126915. DOI: 10.1016/j.micres.2021.126915
Ghozlan, M. H., Eman, E.-A., Tokgöz, S., Lakshman, D. K. and Mitra, A. (2020) Plant defense against necrotrophic pathogens. American Journal of Plant Sciences, 11, 2122-2138. DOI: 10.4236/ajps.2020.1112149
Gibriel, H. A., Thomma, B. P., & Seidl, M. F. (2016). The age of effectors: genome-based discovery and applications. Phytopathology, 106(10), 1206-1212. https://doi.org/10.1094/PHYTO-02-16-0110-FI
John, E., Singh, K. B., Oliver, R. P., & Tan, K. C. (2021). Transcription factor control of virulence in phytopathogenic fungi. Molecular Plant Pathology, 22(7), 858-881. DOI: 10.1111/mpp.13056
Jones, D. A., Bertazzoni, S., Turo, C. J., Syme, R. A., & Hane, J. K. (2018). Bioinformatic prediction of plant–pathogenicity effector proteins of fungi. Current Opinion in Microbiology, 46, 43-49. DOI: 10.1016/j.mib.2018.01.017
Kamoun, S. (2006). A catalogue of the effector secretome of plant pathogenic oomycetes. Annual  Review of Phytopathology, 44, 41-60. https://doi.org/10.1146/annurev.phyto.44.070505.143436
Kim, W., & Chen,  W. (2019). Phytotoxic metabolites produced by legume-associated Ascochyta and its related genera in the Dothideomycetes. Toxins, 11(11), 627 .https://doi.org/10.3390/toxins11110627
Kumar, K., Purayannur, S., Kaladhar, V. C., Parida, S. K., & Verma, P. K. (2018 .)mQTL ‐ seq and classical  mapping  implicates  the role of an AT ‐ HOOK  MOTIF CONTAINING NUCLEAR  LOCALIZED  (AHL)  family  gene  in  A  scochyta  blight  resistance  of chickpea.  Plant,  Cell  & Environment41(9),  2128-2140 . https://doi.org/10.1111/pce.13177
Lanubile, A., Ellis, M. L., Marocco, A., & Munkvold, G. P. (2016). Association of effector Six 6 with vascular wilt symptoms caused by Fusarium oxysporum on soybean. Phytopathology, 106(11), 1404-1412. https://doi.org/10.1094/PHYTO-03-16-0118-R
Li, S., Peng, X., Wang, Y., Hua, K., Xing, F., Zheng, Y., Liu, W., Sun, W., & Wei, S. (2019). The effector AGLIP1 in Rhizoctonia solani AG1 IA triggers cell death in plants and promotes disease development through inhibiting PAMP-triggered immunity in Arabidopsis thaliana. Frontiers in Microbiology, 10, 2228. https://doi.org/10.3389/fmicb.2019.02228
Liang, X., Bao, Y., Zhang, M., Du, D., Rao, S., Li, Y., Wang, X., Xu, G., Zhou, Z., Chang, Q., Duan, W., Ai, G., Lu, J., Zhou, J., & Dou, D. (2021). A Phytophthora capsici RXLR effector targets and inhibits the central immune kinases to suppress plant immunity. New Phytologist, 232(1), 264-278. DOI: 10.1111/nph.17573
Liu, Z., Zhang, Z., Faris, J. D., Oliver, R. P., Syme, R., McDonald, M. C., McDonald, B. A., Solomon, P. S., Lu, Sh., Shelver, W. L., Xu, S., & Friesen, T. L. (2012). The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1. PLoS Pathogens, 8(1), e1002467. https://doi.org/10.1371/journal.ppat.1002467
Lo Presti, L., Zechmann, B., Kumlehn, J., Liang, L., Lanver, D., Tanaka, S., Bock, R., & Kahmann, R. (2017). An assay for entry of secreted fungal effectors into plant cells. New Phytologist, 213(2), 956-964. https://doi.org/10.1111/nph.14188
Lu, S., & Edwards, M. C. (2016). Genome-wide analysis of small secreted cysteine-rich proteins identifies candidate effector proteins potentially involved in Fusarium graminearum− wheat interactions. Phytopathology, 106(2), 166-176. https://doi.org/10.1094/PHYTO-09-15-0215-R
Markstein, M., Markstein, P., Markstein, V., & Levine, M. S. (2002). Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo. Proceedings of the National Academy of Sciences, 99(2), 763-768. https://doi.org/10.1073/pnas.012591199
Murray, M. G., & Thompson, W. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8(19), 4321-4326. https://doi.org/10.1093/nar/8.19.4321
Maurya, R., Singh, Y., Sinha, M., Singh, K., Mishra, P., Singh, S. K., Verma ,S., Prabha, K., Kumar, K., & Verma, P. K. (2020). Transcript profiling reveals potential regulators for oxidative  stress  response  of  a  necrotrophic  chickpea  pathogen  Ascochyta  rabiei.  3 Biotech, 10, 1-14 .https://doi.org/10.1007/s13205-020-2107-8
Neu,  E., & Debener, T. (2019). Prediction of the Diplocarpon rosae secretome reveals candidate genes for effectors and virulence factors. Fungal Biology, 123(3), 231-239. https://doi.org/10.1016/j.funbio.2018.12.003
Ramezani Khozestani, F., Zaker Tavallaie, F., Shokouhifar, F., & Mamarabadi, M. (2023). Optimization of Ascochyta rabiei pathogenicity test on resistant and susceptible chickpea cultivars under in vitro condition. Iranian Journal Pulses Research.doi: 10.22067/ijpr.2023.77619.1039
Reddy, D. S., Bhatnagar-Mathur, P., Reddy, P. S., Sri Cindhuri, K., Sivaji Ganesh, A., & Sharma, K. K. (2016). Identification and validation of reference genes and their impact on normalized gene expression studies across cultivated and wild cicer species. PloS One, 11(2), e0148451. https://doi.org/10.1371/journal.pone.0148451
Rep, M. (2005) Small proteins of plant-pathogenic fungi secreted during host colonization. FEMS Microbiology Letters, 253(1), 19-27. https://doi.org/10.1016/j.femsle.2005.09.014
Rodriguez‐Moreno, L., Ebert, M. K., Bolton, M. D., & Thomma, B. P. (2018). Tools of the crook‐infection strategies of fungal plant pathogens. The Plant Journal, 93(4), 664-674. https://doi.org/10.1111/tpj.13810
Rozano, L., Jones, D. A., Hane, J. K., & Mancera, R. L. (2023). Template-based modelling of the  structure  of  fungal  effector  proteins. Molecular  Biotechnology,  1-30. https://doi.org/10.1007/s12033-023-00703-4
Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic  trees.  Molecular  Biology  and  Evolution4(4),  406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
Seidl,  M.  F.,  Wang,  R.-P.,  Van  den  Ackerveken,  G.,  Govers,  F.,  &  Snel,  B.  (2012). Bioinformatic inference of specific and general transcription factor binding sites in the plant  pathogen  Phytophthora  infestans. PLoS  One,  7(12),  e51295. https://doi.org/10.1371/journal.pone.0051295
Shao, D., Smith, D. L., Kabbage, M., & Roth, M. G. (2021). Effectors of plant necrotrophic fungi. Frontiers in Plant Science, 12, 687713. https://doi.org/10.3389/fpls.2021.687713  
Shokoohifar, F., Bagheri, A., & Rastegar, M. F. (2003). Identification of genetic diversity in the Ascochyta blight pathogen of Chickpea [Ascochyta rabiei (Pass.) Lab.] using RAPD markers.  Isfahan  University  of  Technology-Journal  of  Crop  Production  and Processing, 7(2), 193-204 .URL: http://jcpp.iut.ac.ir/article-1-475-en.html
Shokouhifar, F., Bagheri, A., & Falahati-Rastegar, M. (2006). Identification of resistant chickpea lines against pathotypes causing Ascochyta blight disease in Iran. Iranian Journal of Biology, 19(1), 29-42. 
Shokouhifar, F., Rabiei-Motlagh, E., Abbaspour, N., & Toosi, S. (2016). Detection and amplification of LysM effector genes in F. oxysporum f. sp. lycopersici. Nova Biologica Reperta, 2(4), 235-249.
Singh, R., Kumar, K., Purayannur, S ,.Chen, W., & Verma, P. K. (2022). Ascochyta rabiei: A threat to global chickpea production. Molecular Plant Pathology, 23(9), 1241-1261. https://doi.org/10.1111/mpp.13235
Singh, S. K., Shree, A., Verma, S., Singh, K., Kumar, K., Srivastava, V.,Singh, R., Saxena, A., Pandey, A., & Verma, P. K. (2023). The nuclear effector ArPEC25 from the necrotrophic fungus Ascochyta rabiei targets the chickpea transcription factor CaβLIM1a and negatively modulates lignin biosynthesis, increasing host susceptibility. The Plant Cell, 35(3), 1134-1159. .https://doi.org/10.1093/plcell/koac372
Sinha, M., Shree, A., Singh, K., Kumar, K., Singh, S. K., Kumar, V., & Verma, P. K. (2021). Modulation of fungal virulence through CRZ1 regulated F-BAR-dependent actin remodeling and endocytosis in chickpea infecting phytopathogen Ascochyta rabiei. PLoS Genetics, 17(5), e1009137. https://doi.org/10.1371/journal.pgen.1009137
Sonah, H., Deshmukh, R. K., & Bélanger, R. R. (2016). Computational prediction of effector proteins in fungi: opportunities and challenges. Frontiers in Plant Science, 7, 126. https://doi.org/10.3389/fpls.2016.00126
Sperschneider, J., Dodds, P. N., Gardiner, D. M., Manners, J. M., Singh, K. B., & Taylor, J. M. (2015). Advances and challenges in computational prediction of effectors from plant pathogenic fungi. PLoS Pathogens, 11(5), e1004806. https://doi.org/10.1371/journal.ppat.1004806
Sperschneider, J., & Dodds, P. N. (2022). EffectorP 3.0: prediction of apoplastic and cytoplasmic effectors in fungi and oomycetes. Molecular Plant-Microbe Interactions, 35(2), 146-156. https://doi.org/10.1094/MPMI-08-21-0201-R
Stergiopoulos,  I.,  &  de  Wit,  P.  J.  (2009).  Fungal  effector  proteins.  Annual  Review  of Phytopathology, 47, 233-263 .https://doi.org/10.1146/annurev.phyto.112408.132637
Taylor, P. W., & Ford, R. (2007). Diagnostics, genetic diversity and pathogenic variation of Ascochyta  blight  of  cool  season  food  and  feed  legumes.  Ascochyta  blights  of  grain legumes, 127-133. https://doi.org/10.1007/978-1-4020-6065-6_13
Verma, S., Gazara, R. K., Nizam, S., Parween, S., Chattopadhyay, D., & Verma, P. K. (2016). Draft genome sequencing and secretome analysis of fungal phytopathogen Ascochyta rabiei provides insight into the necrotrophic effector repertoire. Scientific Reports, 6(1), 1-14 .https://DOI: 10.1038/srep24638
Verma,  S.,  Gazara,  R  .K.,  &  Verma,  P.  K.  (2017).  Transcription  factor  repertoire  of necrotrophic  fungal  phytopathogen  Ascochyta  rabiei:  predominance  of  MYB transcription factors as potential regulators of secretome. Frontiers in Plant Science, 8, 1037 .https://doi.org/10.3389/fpls.2017.01037
Vleeshouwers, V., & Oliver, R. P. (2015). Effectors as Tools in Disease Resistance Breeding Against  Biotrophic,  Hemibiotrophic,  and  Necrotrophic  Plant  Pathogens.  Molecular plant-microbe interactions: MPMI, 2015(1), 40-50 .https://doi.org/10.1094/mpmi-10-13-0313-ta.testissue
Wang, X., Jiang, N., Liu, J., Liu, W., & Wang, G. L. (2014). The role of effectors and host immunity in plant–necrotrophic fungal interactions. Virulence, 5(7), 722-732. https://doi.org/10.4161/viru.29798
Zangene, K., Emamjomeh, A., Shokouhifar, F., Mamarabadi, M., & Mehdinezhad, N. (2022). Differentiation  of  an  Iranian  resistance  chickpea  line  to  Ascochyta  blight  from  a susceptible  line  using  a  functional  SNP.  AMB  Express12(1),  45. https://doi.org/10.1186/s13568-022-01385-y
Zhang, W., Ruan, J., Ho, T. H. D., You, Y., Yu, T., & Quatrano, R. S. (2005). Cis-regulatory element based targeted gene finding: genome-wide identification of abscisic acid-and abiotic stress-responsive  genes  in  Arabidopsis  thalianaBioinformatics21(14),  3074-3081. https://doi.org/10.1093/bioinformatics/bti490
Zhang, W. Q., Gui, Y. J., Short, D. P., Li, T. G., Zhang, D. D., Zhou, L., Liu, Ch., Bao, Y. M., Subbarao, k. v., Chen, J. Y., & Dai, X. F. (2018). Verticillium dahliae transcription factor VdFTF1 regulates the expression of multiple secreted virulence factors and is required for full virulence in cotton. Molecular Plant Pathology, 19(4), 841-857. https://doi.org/10.1111/mpp.12569
Zuckerkandl, E., & Pauling, L. (1965). Evolutionary divergence and convergence in proteins. In Evolving genes and proteins (pp. 97-166). Elsevier .https://doi.org/10.1016/B978-1-4832-2734-4.50017-6
 © 2023 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/.