Anderson, J. P., Sperschneider, J., Win, J., Kidd, B., Yoshida, K., Hane, J., Sauners, D.G., & Singh, K. B. (2017). Comparative secretome analysis of Rhizoctonia solani isolates with different host ranges reveals unique secretomes and cell death inducing effectors. Scientific Reports, 7(1), 10410. https://doi.org/10.1038/s41598-017-10405-y
Carreón-Anguiano, K. G., Islas-Flores, I., Vega-Arreguín, J., Sáenz-Carbonell, L., & Canto-Canché, B. (2020). EffHunter: A tool for prediction of effector protein candidates in fungal proteomic databases. Biomolecules, 10(5), 712 . https://doi.org/10.3390/biom10050712
De Wit, P. J., Mehrabi, R., Van den Burg, H. A. and Stergiopoulos, I. (2009) Fungal effector proteins: past, present and future. Molecular Plant Pathology, 10, 735-747. https://doi.org/10.1111/j.1364-3703.2009.00591.x
Emanuelsson, O., Brunak, S., Von Heijne, G. and Nielsen, H. (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocols, 2, 953-971. https://doi.org/10.1038/nprot.2007.131
Faris, J. D. and Friesen, T. L. (2020) Plant genes hijacked by necrotrophic fungal pathogens. Current Opinion in Plant Biology, 56, 74-80. doi: 10.1016/j.pbi.2020.04.003.
Felsenstein, J. (1992). Phylogenies from restriction sites: a maximum ‐ likelihood approach. Evolution, 46(1), 159-173. https://doi/10.1111/j.1558-5646.1992.tb01991.x
Firouzmand, H., Toosi, S., Shokouhifar, F., & Mamarabadi, M. (2023). Resistance pattern of a cold tolerant chickpea cultivar (Saral) against different pathotypes of Ascochyta rabiei using an in vitro pathogenicity test method. Australasian Plant Pathology, 52, 303–315. https://doi.org/10.1007/s13313-023-00920-0
Fondevilla, S., Krezdorn, N., Rotter, B., Kahl, G., & Winter, P. (2015). In planta identification of putative pathogenicity factors from the chickpea pathogen Ascochyta rabiei by de novo transcriptome sequencing using RNA-Seq and massive analysis of cDNA ends. Frontiers in Microbiology, 6, 1329 . https:// doi: 10.3389/fmicb.2015.01329
Fornes, O., Castro-Mondragon, J. A., Khan, A., Van der Lee, R., Zhang, X., Richmond, P. A., Modi, B. P., Correard, S., Gheorghe, M., & Baranašić, D. (2020). JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Research, 48(D1), D87-D92 .https://doi.org/10.1093/nar/gkz1001
Gai, Y., Li, L., Liu, B., Ma, H., Chen, Y., Zheng, F., Sun, X., Wang, M., Jiao, C. and Li, H. (2022) Distinct and essential roles of bZIP transcription factors in the stress response and pathogenesis in Alternaria alternata. Microbiological Research, 256, 126915. DOI: 10.1016/j.micres.2021.126915
Ghozlan, M. H., Eman, E.-A., Tokgöz, S., Lakshman, D. K. and Mitra, A. (2020) Plant defense against necrotrophic pathogens. American Journal of Plant Sciences, 11, 2122-2138. DOI: 10.4236/ajps.2020.1112149
Gibriel, H. A., Thomma, B. P., & Seidl, M. F. (2016). The age of effectors: genome-based discovery and applications. Phytopathology, 106(10), 1206-1212. https://doi.org/10.1094/PHYTO-02-16-0110-FI
John, E., Singh, K. B., Oliver, R. P., & Tan, K. C. (2021). Transcription factor control of virulence in phytopathogenic fungi. Molecular Plant Pathology, 22(7), 858-881. DOI: 10.1111/mpp.13056
Jones, D. A., Bertazzoni, S., Turo, C. J., Syme, R. A., & Hane, J. K. (2018). Bioinformatic prediction of plant–pathogenicity effector proteins of fungi. Current Opinion in Microbiology, 46, 43-49. DOI: 10.1016/j.mib.2018.01.017
Kamoun, S. (2006). A catalogue of the effector secretome of plant pathogenic oomycetes. Annual Review of Phytopathology, 44, 41-60. https://doi.org/10.1146/annurev.phyto.44.070505.143436
Kim, W., & Chen, W. (2019). Phytotoxic metabolites produced by legume-associated Ascochyta and its related genera in the Dothideomycetes. Toxins, 11(11), 627 .https://doi.org/10.3390/toxins11110627
Kumar, K., Purayannur, S., Kaladhar, V. C., Parida, S. K., & Verma, P. K. (2018 .)mQTL ‐ seq and classical mapping implicates the role of an AT ‐ HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) family gene in A scochyta blight resistance of chickpea. Plant, Cell & Environment, 41(9), 2128-2140 . https://doi.org/10.1111/pce.13177
Lanubile, A., Ellis, M. L., Marocco, A., & Munkvold, G. P. (2016). Association of effector Six 6 with vascular wilt symptoms caused by Fusarium oxysporum on soybean. Phytopathology, 106(11), 1404-1412. https://doi.org/10.1094/PHYTO-03-16-0118-R
Li, S., Peng, X., Wang, Y., Hua, K., Xing, F., Zheng, Y., Liu, W., Sun, W., & Wei, S. (2019). The effector AGLIP1 in Rhizoctonia solani AG1 IA triggers cell death in plants and promotes disease development through inhibiting PAMP-triggered immunity in Arabidopsis thaliana. Frontiers in Microbiology, 10, 2228. https://doi.org/10.3389/fmicb.2019.02228
Liang, X., Bao, Y., Zhang, M., Du, D., Rao, S., Li, Y., Wang, X., Xu, G., Zhou, Z., Chang, Q., Duan, W., Ai, G., Lu, J., Zhou, J., & Dou, D. (2021). A Phytophthora capsici RXLR effector targets and inhibits the central immune kinases to suppress plant immunity. New Phytologist, 232(1), 264-278. DOI: 10.1111/nph.17573
Liu, Z., Zhang, Z., Faris, J. D., Oliver, R. P., Syme, R., McDonald, M. C., McDonald, B. A., Solomon, P. S., Lu, Sh., Shelver, W. L., Xu, S., & Friesen, T. L. (2012). The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1. PLoS Pathogens, 8(1), e1002467. https://doi.org/10.1371/journal.ppat.1002467
Lo Presti, L., Zechmann, B., Kumlehn, J., Liang, L., Lanver, D., Tanaka, S., Bock, R., & Kahmann, R. (2017). An assay for entry of secreted fungal effectors into plant cells. New Phytologist, 213(2), 956-964. https://doi.org/10.1111/nph.14188
Lu, S., & Edwards, M. C. (2016). Genome-wide analysis of small secreted cysteine-rich proteins identifies candidate effector proteins potentially involved in Fusarium graminearum− wheat interactions. Phytopathology, 106(2), 166-176. https://doi.org/10.1094/PHYTO-09-15-0215-R
Markstein, M., Markstein, P., Markstein, V., & Levine, M. S. (2002). Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo. Proceedings of the National Academy of Sciences, 99(2), 763-768. https://doi.org/10.1073/pnas.012591199
Murray, M. G., & Thompson, W. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8(19), 4321-4326. https://doi.org/10.1093/nar/8.19.4321
Maurya, R., Singh, Y., Sinha, M., Singh, K., Mishra, P., Singh, S. K., Verma ,S., Prabha, K., Kumar, K., & Verma, P. K. (2020). Transcript profiling reveals potential regulators for oxidative stress response of a necrotrophic chickpea pathogen Ascochyta rabiei. 3 Biotech, 10, 1-14 .https://doi.org/10.1007/s13205-020-2107-8
Neu, E., & Debener, T. (2019). Prediction of the Diplocarpon rosae secretome reveals candidate genes for effectors and virulence factors. Fungal Biology, 123(3), 231-239. https://doi.org/10.1016/j.funbio.2018.12.003
Ramezani Khozestani, F., Zaker Tavallaie, F., Shokouhifar, F., & Mamarabadi, M. (2023). Optimization of Ascochyta rabiei pathogenicity test on resistant and susceptible chickpea cultivars under in vitro condition. Iranian Journal Pulses Research.doi: 10.22067/ijpr.2023.77619.1039
Reddy, D. S., Bhatnagar-Mathur, P., Reddy, P. S., Sri Cindhuri, K., Sivaji Ganesh, A., & Sharma, K. K. (2016). Identification and validation of reference genes and their impact on normalized gene expression studies across cultivated and wild cicer species. PloS One, 11(2), e0148451. https://doi.org/10.1371/journal.pone.0148451
Rep, M. (2005) Small proteins of plant-pathogenic fungi secreted during host colonization. FEMS Microbiology Letters, 253(1), 19-27. https://doi.org/10.1016/j.femsle.2005.09.014
Rodriguez‐Moreno, L., Ebert, M. K., Bolton, M. D., & Thomma, B. P. (2018). Tools of the crook‐infection strategies of fungal plant pathogens. The Plant Journal, 93(4), 664-674. https://doi.org/10.1111/tpj.13810
Rozano, L., Jones, D. A., Hane, J. K., & Mancera, R. L. (2023). Template-based modelling of the structure of fungal effector proteins. Molecular Biotechnology, 1-30. https://doi.org/10.1007/s12033-023-00703-4
Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
Seidl, M. F., Wang, R.-P., Van den Ackerveken, G., Govers, F., & Snel, B. (2012). Bioinformatic inference of specific and general transcription factor binding sites in the plant pathogen Phytophthora infestans. PLoS One, 7(12), e51295. https://doi.org/10.1371/journal.pone.0051295
Shao, D., Smith, D. L., Kabbage, M., & Roth, M. G. (2021). Effectors of plant necrotrophic fungi. Frontiers in Plant Science, 12, 687713. https://doi.org/10.3389/fpls.2021.687713
Shokoohifar, F., Bagheri, A., & Rastegar, M. F. (2003). Identification of genetic diversity in the Ascochyta blight pathogen of Chickpea [Ascochyta rabiei (Pass.) Lab.] using RAPD markers. Isfahan University of Technology-Journal of Crop Production and Processing, 7(2), 193-204 .URL: http://jcpp.iut.ac.ir/article-1-475-en.html
Shokouhifar, F., Bagheri, A., & Falahati-Rastegar, M. (2006). Identification of resistant chickpea lines against pathotypes causing Ascochyta blight disease in Iran. Iranian Journal of Biology, 19(1), 29-42.
Shokouhifar, F., Rabiei-Motlagh, E., Abbaspour, N., & Toosi, S. (2016). Detection and amplification of LysM effector genes in F. oxysporum f. sp. lycopersici. Nova Biologica Reperta, 2(4), 235-249.
Singh, R., Kumar, K., Purayannur, S ,.Chen, W., & Verma, P. K. (2022). Ascochyta rabiei: A threat to global chickpea production. Molecular Plant Pathology, 23(9), 1241-1261. https://doi.org/10.1111/mpp.13235
Singh, S. K., Shree, A., Verma, S., Singh, K., Kumar, K., Srivastava, V.,Singh, R., Saxena, A., Pandey, A., & Verma, P. K. (2023). The nuclear effector ArPEC25 from the necrotrophic fungus Ascochyta rabiei targets the chickpea transcription factor CaβLIM1a and negatively modulates lignin biosynthesis, increasing host susceptibility. The Plant Cell, 35(3), 1134-1159. .https://doi.org/10.1093/plcell/koac372
Sinha, M., Shree, A., Singh, K., Kumar, K., Singh, S. K., Kumar, V., & Verma, P. K. (2021). Modulation of fungal virulence through CRZ1 regulated F-BAR-dependent actin remodeling and endocytosis in chickpea infecting phytopathogen Ascochyta rabiei. PLoS Genetics, 17(5), e1009137. https://doi.org/10.1371/journal.pgen.1009137
Sonah, H., Deshmukh, R. K., & Bélanger, R. R. (2016). Computational prediction of effector proteins in fungi: opportunities and challenges. Frontiers in Plant Science, 7, 126. https://doi.org/10.3389/fpls.2016.00126
Sperschneider, J., Dodds, P. N., Gardiner, D. M., Manners, J. M., Singh, K. B., & Taylor, J. M. (2015). Advances and challenges in computational prediction of effectors from plant pathogenic fungi. PLoS Pathogens, 11(5), e1004806. https://doi.org/10.1371/journal.ppat.1004806
Sperschneider, J., & Dodds, P. N. (2022). EffectorP 3.0: prediction of apoplastic and cytoplasmic effectors in fungi and oomycetes. Molecular Plant-Microbe Interactions, 35(2), 146-156. https://doi.org/10.1094/MPMI-08-21-0201-R
Stergiopoulos, I., & de Wit, P. J. (2009). Fungal effector proteins. Annual Review of Phytopathology, 47, 233-263 .https://doi.org/10.1146/annurev.phyto.112408.132637
Taylor, P. W., & Ford, R. (2007). Diagnostics, genetic diversity and pathogenic variation of Ascochyta blight of cool season food and feed legumes. Ascochyta blights of grain legumes, 127-133. https://doi.org/10.1007/978-1-4020-6065-6_13
Verma, S., Gazara, R. K., Nizam, S., Parween, S., Chattopadhyay, D., & Verma, P. K. (2016). Draft genome sequencing and secretome analysis of fungal phytopathogen Ascochyta rabiei provides insight into the necrotrophic effector repertoire. Scientific Reports, 6(1), 1-14 .https://DOI: 10.1038/srep24638
Verma, S., Gazara, R .K., & Verma, P. K. (2017). Transcription factor repertoire of necrotrophic fungal phytopathogen Ascochyta rabiei: predominance of MYB transcription factors as potential regulators of secretome. Frontiers in Plant Science, 8, 1037 .https://doi.org/10.3389/fpls.2017.01037
Vleeshouwers, V., & Oliver, R. P. (2015). Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens. Molecular plant-microbe interactions: MPMI, 2015(1), 40-50 .https://doi.org/10.1094/mpmi-10-13-0313-ta.testissue
Wang, X., Jiang, N., Liu, J., Liu, W., & Wang, G. L. (2014). The role of effectors and host immunity in plant–necrotrophic fungal interactions. Virulence, 5(7), 722-732. https://doi.org/10.4161/viru.29798
Zangene, K., Emamjomeh, A., Shokouhifar, F., Mamarabadi, M., & Mehdinezhad, N. (2022). Differentiation of an Iranian resistance chickpea line to Ascochyta blight from a susceptible line using a functional SNP. AMB Express, 12(1), 45. https://doi.org/10.1186/s13568-022-01385-y
Zhang, W., Ruan, J., Ho, T. H. D., You, Y., Yu, T., & Quatrano, R. S. (2005). Cis-regulatory element based targeted gene finding: genome-wide identification of abscisic acid-and abiotic stress-responsive genes in Arabidopsis thaliana. Bioinformatics, 21(14), 3074-3081. https://doi.org/10.1093/bioinformatics/bti490
Zhang, W. Q., Gui, Y. J., Short, D. P., Li, T. G., Zhang, D. D., Zhou, L., Liu, Ch., Bao, Y. M., Subbarao, k. v., Chen, J. Y., & Dai, X. F. (2018). Verticillium dahliae transcription factor VdFTF1 regulates the expression of multiple secreted virulence factors and is required for full virulence in cotton. Molecular Plant Pathology, 19(4), 841-857. https://doi.org/10.1111/mpp.12569
Zuckerkandl, E., & Pauling, L. (1965). Evolutionary divergence and convergence in proteins. In Evolving genes and proteins (pp. 97-166). Elsevier .https://doi.org/10.1016/B978-1-4832-2734-4.50017-6
© 2023 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/.