Potential Insecticidal Toxins Extracted from Some Isolates of Akanthomyces

نوع مقاله : گزارش کوتاه-انگلیسی

نویسندگان

1 M.Sc. Graduate of Agricultural Entomology, Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran

2 Professor, Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran

3 Assistant Professor, Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran

چکیده

Entomopathogenic fungi (EPF) are the key elements for pest management in sustainable agriculture. Many EPFs can produce secondary metabolites with toxic effects, which playing an essential role in their pathogenicity. In this study, the metabolites of some EPFs, including three isolates of Akanthomyces lecanii species (PAL6, PAL7, and PAL8) and one isolate of A. muscarius species (AGM5), were biochemically analyzed. Extracellular metabolites were isolated from the fungal cells of the two-week-old culture of each isolate, and the chemical constituents were identified using by high-performance liquid chromatography (HPLC). During the retention times interval of 10-13 minutes, four different peaks were observed within metabolites of the isolates PAL6, PAL7, and PAL8. In the case of the AGM5 isolate, ; however, one peak was observed at 11.53 retention time. Comparative analysis showed the presence of insecticidal toxic cyclic peptides such as bassianolide within the fungal metabolites. Moreover, one peak with a new identity was detected within the metabolites from the fungal isolates of PAL6, PAL7, and PAL8 in the retention time interval of 5 minutes, from the isolate AGM5 at 11.53 retention time. The results demonstrated that the production ofproducing toxic compounds such as bassianolide by the EPF probably contributed to their insecticidal effects.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Potential Insecticidal Toxins Extracted from Some Isolates of Akanthomyces

نویسندگان [English]

  • T. Soltani 1
  • F. Yarahmadi 2
  • A. Rajabpour 2
  • M. H. Ghodoum Parizipour 3
1 M.Sc. Graduate of Agricultural Entomology, Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
2 Professor, Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
3 Assistant Professor, Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
Abdulle, Y. A., Nazir, T., Sayed, S., Mahmoud, S. F., Majeed, M. Z., Aslam, H. M. U., & Qiu, D. (2021). Sub-Lethal Effects of Lecanicillium lecanii (Zimmermann)-Derived Partially Purified Protein and Its Potential Implication in Cotton (Gossypium hirsutum L.) Defense against Bemisia tabaci Gennadius (Aleyrodidae: Hemiptera). Agriculture, 11(8), 778.‏ DOI: https://doi.org/10.3390/agriculture11080778
Aini, A. N., Mongkolsamrit, S., Wijanarka, W., Thanakitpipattana, D., Luangsa-Ard, J. J., & Budiharjo, A. (2020). Diversity of Akanthomyces on moths (Lepidoptera) in Thailand. MycoKeys, 71, 1.‏ DOI: 10.3897/mycokeys.71.55126.
Azadi, F., Rajabpour, A., Lotfi Jalal Abadi, A., & Mahjoub, M. (2018). Resistance of tomato cultivars to Tuta absoluta (Lepidoptera: Gelechiidae) under field condition. Journal of Crop Protection7(1), 87-92.
Berestetskiy, A. and Hu, Q. (2021). The chemical ecology approach to reveal fungal metabolites for arthropod pest management. Microorganisms, 9(7), 1379.‏ DOI: https://doi.org/10.3390/microorganisms9071379
Boguś, M. I., Wrońska, A. K., Kaczmarek, A., & Boguś-Sobocińska, M. (2021). In vitro screening of 65 mycotoxins for insecticidal potential. Plos one16(3), e0248772.
Broumandnia, F., & Rajabpour, A. (2020). Efficacies of some isolates of Lecanicillium lecanii to control Tribolium castaneum (Col., Tenebrionidae). Journal of Plant Diseases and Protection, 127(5): 625-631.‏ DOI: https://doi.org/10.1007/s41348-020-00324-y.
Broumandnia, F., Rajabpour, A., Parizipour, M. H. G., & Yarahmadi, F. (2021). Morphological and molecular identification of four isolates of the entomopathogenic fungal genus Akanthomyces and their effects against Bemisia tabaci on cucumber. Bulletin of Entomological Research, 111(5), 628-636.‏ DOI: https://doi.org/10.1017/S0007485321000298.
Butt, T. M., Ibrahim, L., Ball, B. V., & Clark, S. J. (1994). Pathogenicity of the entomogenous fungi Metarhizium anisopliae and Beauveria bassiana against crucifer pests and the honey bee. Biocontrol Science and Technology, 4, 207–214. DOI: https://doi.org/10.1080/09583159409355328.
Effendi, H. (2012). Phenolic Compounds of Sponge-associated Fungi (Lecanicillium evansii). Microbiology Indonesia, 6(3): 1-1.‏
Isaka, M., Kittakoop, P., Kirtikara, K., Hywel-Jones, N.L., & Thebtaranonth, Y. (2005). Bioactive substances from insect pathogenic fungi. Acc. Chemical Research, 38, 813–823. DOI: https://doi.org/10.1021/ar040247r.
Jirakkakul, J., Punya, J., Pongpattanakitshote, S., Paungmoung, P., Vorapreeda, N., Tachaleat, A., & Cheevadhanarak, S. (2008). Identification of the nonribosomal peptide synthetase gene responsible for bassianolide synthesis in wood-decaying fungus Xylaria sp. BCC1067. Microbiology, 154, 995–1006. DOI: https://doi.org/10.1099/mic.0.2007/013995-0.
Keppanan, R., Sivaperumal, S., Hussain, M., Bamisile, B. S., Aguila, L. C. R., Qasim, M., & Krutmuang, P. 2019. Molecular characterization of pathogenesis involving the GAS 1 gene from Entomopathogenic fungus Lecanicillium lecanii and its virulence against the insect host Diaphorina citri. Pesticide Biochemistry and Physiology, 157, 99-107.‏ DOI: https://doi.org/10.1016/j.pestbp.2019.03.012.
Kershaw, M.J., Moorhouse, E.R., Bateman, R., Reynolds, S.E., & Charnley, A.K. (1999). The role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insect. Journal of Invertebrate Pathology, 74, 213–223. DOI: https://doi.org/10.1006/jipa.1999.4884.
Lebert H. (1858). Über einige neue oder unvollkommen gekannte Krankheiten der Insekten, welche durch Entwicklung niederer Pflanzen im lebenden Körper enstehen. Zeitschrift für wissenschaftliche Zoologie, 9, 439–453.
Litwin, A., Nowak, M., & Różalska, S. (2020). Entomopathogenic fungi: unconventional applications. Reviews in Environmental Science and Biotechnology, 19, 23–42.‏ DOI: https://doi.org/10.1007/s11157-020-09525-1.
Liu, W.M., Xie, Y.P., Xue, J.L., Gao, Y., Zhang, Y.F., & Jun, W. (2009). Histopathological changes of Ceroplastes japonicus infected by Lecanicillium lecanii. Journal of Invertebrate Pathology, 101: 96–105. DOI: https://doi.org/10.1016/j.jip.2009.03.002.
Mohammadi, S., Seraj, A. A., & Rajabpour, A. (2015). Evaluation of six cucumber greenhouse cultivars for resistance to Tetranychus turkestani (Acari: Tetranychidae). Journal of Crop Protection4(4), 545-556.
Molnar, I., Gibson, D.M., & Krasnoff, S.B. (2010). Secondary metabolites from entomopathogenic Hypocrealean fungi. Natural Product Report, 27, 1241–1275. DOI: https://doi.org/10.1039/C001459C.
Mongkolsamrit, S., Noisripoom, W., Thanakitpipattana, D., Wuthikun, T., Spatafora, J.W., & Luangsa-ard, J.J. (2018). Disentangling cryptic species with isaria-like morphs in Cordycipitaceae. Mycologia, 110(1), 230–257. DOI: https://doi.org/10.1080/00275514.2018.1446651.
Namara, L.M., Carolan, J.C., Griffin, C.T., Fitzpatrick, D., & Kavanagh, K. (2017). The effect of entomopathogenic fungal culture filtrate on the immune response of the greater wax moth, Galleria mellonella. Journal of Insect Physiology, 100, 82–92. DOI: https://doi.org/10.1016/j.jinsphys.2017.05.009.
Ravindran, K., Akutse, K.S., Sivaramakrishnan, S., & Wang, L. (2016). Determination and characterization of destruxin production in Metarhizium anisopliae Tk6 and formulations for Aedes aegypti mosquitoes control at the field level. Toxicon, 120, 89–96. DOI: https://doi.org/10.1016/j.jinsphys.2017.05.009.
Ravindran, K., Sivaramakrishnan, S., Hussain, M., Dash, C. K., Bamisile, B. S., Qasim, M., & Liande, W. 2018. Investigation and molecular docking studies of Bassianolide from Lecanicillium lecanii against Plutella xylostella (Lepidoptera: Plutellidae). Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 206, 65-72.‏ DOI: https://doi.org/10.1016/j.cbpc.2018.03.004.
Ren, S.X., Ali, S., Huang, Z., & Wu, J.H. (2010). Lecanicillium muscarium as microbial insecticide against whitefly and its interaction with other natural enemies. Microbiology and Microbial Biotechnology, 27, 339-348.‏
Singh, H. B., Keswani, C., Ray, S., Yadav, S. K., Singh, S. P., Singh, S., & Sarma, B. K. (2015). Beauveria bassiana: biocontrol beyond lepidopteran pests. In Biocontrol of Lepidopteran Pests (pp. 219-235). Springer, Cham.
Soltani, T., Yarahmadi, F., Rajabpour, A., & Ghoddom Parizi Pour, M. H. (2022). Pathogenicity of Iranian isolates of Akanthomyces lecanii and A. muscarius on the black bean aphid (Aphis fabae Scopoli). Plant Protection (Scientific Journal of Agriculture), 45(1), 19-28.‏ DOI: 10.22055/PPR.2021.17246.
Sowjanya Sree, K., Padmaja, V., & Murthy, Y.L.N. (2008). Insecticidal activity of destruxin, a mycotoxin from Metarhizium anisopliae (Hypocreales), against Spodoptera litura (Lepidoptera: Noctuidae) larval stages. Pest Management Science, 64, 119–125. DOI: https://doi.org/10.1002/ps.1480.
Vey, A., Hoagland, R.E., & Butt, T.M. (2001). Toxic metabolites of fungal biocontrol agents. In: Butt, T.M., Jackson, C.W., Magan, N. (Eds.), Fungi as Biocontrol Agents: Progress, Problems and Potential. CABI Publishing, Wallingford, UK, pp. 311–346.
Wang, X., Gong, X., Li, P., Lai, D., & Zhou, L. (2018). Structural diversity and biological activities of cyclic Depsipeptides from fungi. Molecules, 23,169. DOI: https://doi.org/10.3390/molecules23010169.
Wu, S., Xie, H., Li, M., Xu, X., & Lei, Z. (2016). Highly virulent Beauveria bassiana strains against the two-spotted spider mite, Tetranychus urticae show no pathogenicity against five phytoseiid mite species. Experimental and Applied Acarology, 70, 421–435. DOI: https://doi.org/10.3390/molecules23010169.
 © 2023 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/.