برآورد زمان‌های کشنده چند دمای فرابهینه علیه حشرات کامل پنج آفت انباری

نوع مقاله : علمی پژوهشی-فارسی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه گیاه‌پزشکی، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 استادیار،گروه گیاه‌پزشکی، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 دانشیار، گروه گیاه‌پزشکی، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

10.22055/ppr.2024.45055.1712

چکیده

اثرات سوء مرتبط با کاربرد آفتکش‌های انباری، علاقه به استفاده از روش‌های جایگزین ایمن‌تر مانند کنترل فیزیکی را افزایش داده‌اند. کنترل فیزیکی، به ویژه از طریق مدیریت دما، به عنوان یکی از امیدبخش‌ترین روش‌های جایگزین برای کنترل این آفات به شمار می‌رود. در این پژوهش، اثر کشنده دماهای فرابهینه 40، 43، 46، 50 و 54 درجه سلسیوس علیه حشرات کامل Trogoderma variabile Ballion، Callosobruchus maculatus (F.)، Lasioderma serricorne F.، Oryzaephilus surinamensis L. و Plodia interpunctella (Hübner) بررسی شد. طبق نتایج و با توجه به مقادیر LT50 و LT95، تحمل حشرات کامل نر و ماده هر گونه به دماهای فرابهینه یکسان بود. با افزایش دما، زمان‌های کشنده به شکل معنی‌داری کاهش یافتند، اما روند آن در پنج گونه مورد بررسی متفاوت بود. مقادیر LT50 دمای °C 40 برای T. variabile، C. maculatus، L. serricorne، O. surinamensis و P. interpunctella به ترتیب حدود 18، 9، 47، 34 و 5/7 ساعت بود که برای دمای 54 درجه به ترتیب به حدود 7، 4، 12، 8 و 8 دقیقه کاهش یافت. مقادیر LT95 برآورد شده دمای 40 درجه نیز به ترتیب حدود 7/3، 8/4، 7/5، 5/5 و 9/1 روز بود که برای دمای 54 درجه به ترتیب به حدود 20، 18، 23، 14 و 18 دقیقه کاهش یافت. به طور کلی، هم با توجه به مقادیر LT50 و هم LT95، سوسک توتون متحمل‌ترین گونه بود. همچنین، سوسک چهارنقطه‌ای حبوبات با توجه به مقادیر LT50 و شپشه دندانه‌دار برنج با توجه به مقادیر LT95 حساس‌ترین گونه‌ها به دماهای بالای مورد بررسی بودند. نتایج این پژوهش به خوبی نشان می‌دهند که دماهای فرابهینه به ویژه 50 و 54 درجه سلسیوس می‌توانند در کنترل این پنج آفت انباری و سایر آفات انباری بسیار موثر باشند و بدون نگرانی از اثرات سوء بر محیط زیست و سلامت انسان، به روش‌های مختلف مورد استفاده قرار گیرند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of lethal times of supra-optimal temperatures against adults of five stored-product insect pests

نویسندگان [English]

  • M. Abbasi 1
  • M. Yazdanian 2
  • A. Afshari 3
1 M.Sc. student, Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Assistant Professor, Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 Associate Professor, Department of Plant Protection, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

Background and Objectives

The escalating concerns regarding the adverse effects link to pesticide utilization against stored-product pests have amplified interest in exploring safer alternative approaches, notably physical methods. Temperature management, a prominent avenue within physical control, is considered one of the most promising strategies against these pests. This investigation scrutinizes the effectiveness of elevated temperatures on adult Trogoderma variabile, Callosobruchus maculatus, Lasioderma serricorne, Oryzaephilus surinamensis), and Plodia interpunctella.

Materials and Methods

Experiments employed one-day-old adults. High temperatures (40, 43, 46, 50 and 54 °C) were regulated using an electric oven (Memmert, Germany). Initially, each species underwent individual assessment in preliminary tests, establishing eight exposure durations for the main bioassays. Within each exposure duration, groups of one-day-old adults (4 replicates, comprising 25 male and 25 female adults per replicate) were housed in glass Petri dishes. Upon completion of the exposure period, adults were relocated to ambient room conditions (21-27 °C; 55-70% R.H.). Subsequently, deceased males and females were tallied after a 24-hour interval.

Results

Both male and female adults across all species exhibited equivalent sensitivity to supra-optimal temperatures. As anticipated, higher temperatures significantly reduced the LTs; however, distinct response patterns were observed among the studied species. At 40 °C, the LT50s for T. variabile, C. maculatus, L. serricorne, O. surinamensis, and P. interpunctella were approximately 18, 9, 47, 34, and 7.5 h, respectively. At 54 °C, these times decreased to about 7, 4, 12, 8 and 8 min, respectively. Correspondingly, the LT95s at 40 °C these pests were approximately 3.7, 4.8, 5.7, 5.5, and 1.9 days, respectively, whereas at 54 °C, they reduced substantially to about 20, 18, 23, 14, and 26 min, respectively. For T. variabile, the LT50s at 43, 46, and 50 °C (approximately 13, 11.3, and 11 min, respectively) were roughly 1.7 times longer than that at 54 °C (around 7 min). Conversely, at 40 °C, the LT50 was considerably lengthier (1077 min). C. maculatus adults displayed LT50 values at 46 and 50 °C (around 8 and 9 min, respectively), roughly twice as long as those at 54 °C (4 min). At 40 and 43 °C, the LT50s were notably longer (543 and 67 min, respectively). In the case of L. serricorne, solely the LT50 at 50 °C was approximately twice as long as that at 54 °C (approximately 12 min). At 43 and 46 °C, however, the requisite LT50s were lengthier (about 167 and 80 min, respectively), while at 40 °C, the LT50 was substantially longer (about 2820 min). For O. surinamensis adults, the LT50s at 43, 46, and 50 °C were approximately 1.3 to 1.5 times longer (about 13, 12, and 11 minutes, respectively) than that at 54 °C (about 8 min, with the LT50 at 40 °C being notably longer (about 2048 min). Concerning P. interpunctella, the LT50s at 46 and 50 °C were roughly three (about 27 min) and two (about 18 min) times greater than the LT50 at 54 °C (about 8 min). At 40 and 43 °C, the LT50s were considerably longer (about 449 and 98 min, respectively). In general, based on both LT50 and LT95 L. serricorne emerged as the most tolerant species, while C. maculatus, according to LT50 and O. surinamensis based on LT95 appeared to be the most sensitive species to high temperatures.

Discussion

Despite the varied responses observed among adult stored-products insects to supra-optimal temperatures, the comparison between estimated LT50s and LT95s indicated the notable efficacy of high temperatures, particularly at 50 and 54 °C, in inducing substantial mortality rates. This effectiveness ranged from approximately 23 min for L. serricorne to 14 min for O. surinamensis, resulting in 95% mortality. Our findings underscore the potential of high temperatures as a pivotal tool in the management and mitigation of economic losses caused by the five studied pests. The outcomes of this research advocate for the significant role that elevated temperatures can play in addressing these pests. Considering our results in conjunction with existing reports on the effects and efficiency of high temperatures, the physical control method utilizing elevated temperatures emerges as a viable alternative to chemical insecticides for controlling stored-products moths and beetles. This method holds promise and can be incorporated into pest management programs targeting these particular pests.

کلیدواژه‌ها [English]

  • Stored-product pests
  • Physical control
  • High temperatures
  • Lethal time
Abbott W. S. (1925). A method for computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265-267.
Abdelghany, A. Y., Awadalla, S. S., Abdel-Baky, N. F., El-Syrafi, H. A., & Fields, P. G. (2010). Effect of high and low temperatures on the drugstore beetle (Coleoptera: Anobiidae). Journal of Economic Entomology, 103(5), 1909-1914. https://doi.org/10.1603/EC10054.
Abdullahi, G., Muhamad, R., Dzolkhifli, O., & Sinniah, U. R. (2019). Efficiency of cardboard solar heater boxes for disinfestations of stored grains against arthropod pest. Agricultural Science and Technology, 11(3), 247- 257. https://doi.org/10.15547/ast.2019.03.043.
Adler, C. (2002). Efficacy of heat treatments against the tobacco beetle Lasioderma serricorne F. (Col., Anobiidae) and the lesser grain borer Rhyzopertha dominica F. (Col., Bostrichidae). In P. F. Credland, D. M. Armitage, C. H. Bell, P. M. Cogan, & E. Highley (Eds.), Proceedings of the 8th international working conference on stored product protection (pp. 617-621). CAB International, Wallingford, UK. https://doi.org/10.1079/7980851996912.0617.
Ahmady, A., Rahmatzai, N., Zainullah, H., Mousa, M. A. A., & Zaitoun, A. (2016). Effect of temperature on stored product pests Tribolium confusum Jaquelin du Val (Coleoptera: tenebrionidae) and Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae: Bruchidae). Journal of Entomology and Zoology Studies, 4(6), 166-172.
Ahmed, M. (2001). Disinfestation of stored grains, pulses, dried fruits and nuts, and other dried foods. In R. Molins (Ed.), Food irradiation: Principles and applications (pp. 77-112). John Wiley & Sons Inc, New York.
Arbogast, R. T. (1981). Mortality and reproduction of Ephestia cautella and Plodia interpunctella exposed as pupae to high temperatures. Environmental Entomology, 10, 708-711. https://doi.org/10.1093/EE/10.5.708.
Arthur, F. H., Starkus, L. A., Gerken, A. R., Campbell, J. F., & McKay, T. (2019). Growth and development of Tribolium castaneum (Herbst) on rice flour and brown rice as affected by time and temperature. Journal of Stored Products Research, 83, 73-77. https://doi.org/10. 1016/j.jspr.2019.04.005.
Ayvaz, A., Albayrak, S., & Tunçbilek, A. Ş. (2007). Inherited sterility in Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae): Effect of gamma radiation on insect fecundity, fertility and developmental period. Journal of Stored Products Research, 43(3), 234-239.
Ayvaz, A., & Tunçbilek, A. Ş. (2006). Effects of gamma radiation on life stages of the Mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Journal of Pest Science, 79, 215-222.
Azizoglu, U., Karabörklü, S., Yılmaz, S., Ayvaz, A., & Temizgül, R. (2010). Insecticidal activity of microwave radiation on Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) adults. Erciyes University Journal of the Institute of Science and Technology, 26(4), 323-327.
Banks, H. (1977). Distribution and establishment of Trogoderma granarium Everts (Coleoptera: Dermestidae): climatic and other influences. Journal of Stored Products Research, 13, 183-202.
Banks, H. J. (1994). Illustrated identification keys for Trogoderma granarium, T. glabrum, T. inclusum and T. variabile (Coleoptera: Dermestidae) and other Trogoderma associated with stored products. CSiRO Australia Division of Entomology Technical Paper No. 32.
Beckett, S. J., Fields, P. G., & Subramanyam, B. (2007). Disinfestation of stored products and associated structures using heat. In J. Tang, E. Micham, S. Wang, & S. Lurie (Eds.), Heat treatments for postharvest pest control: theory and practice (pp. 182-136). Oxon, United Kingdom: CAB International.
Bergh, J. E., Vagn Jensen, K. M., Åkerlund, M., Hansen, L. S., & Andrén, M. (2006). A contribution to standards for freezing as a pest control method for museums. Collection Forum, 21(1-2), 117-125.
Bhalla, S., Gupta, K., Lal, B., Kapur, M. L., & Khetarpal, R. K. (2008). Efficacy of various non-chemical methods against pulse beetle, Callosobruchus maculatus (Fab.). In Endure International Conference on Diversifying Crop Protection (pp. 12-15). La Grande-Motte, France.
Bhargava, M. C., Choudhary, R. K., & Jain, P. C. (2007). Advances in management of stored grain pests. In P. C. B. Jain, & M. C. Bhargava (Eds.), Entomology: Novel approaches (pp. 425-451). eBooks Ltd., New Delhi, India.
Bodlah, M. A., Iqbal, J., Ashiq, A., Bodlah, I., Jiang, S., Mudassir, M. A., Rasheed, M. T., & Fareen, A. G. E. (2023). Insect behavioral restraint and adaptation strategies under heat stress: An inclusive review. Journal of the Saudi Society of Agricultural Sciences, 22, 327-350. https://doi.org/10.1016/j.jssas.2023.02.004.
Boina, D., & Subramanyam, B. (2004). Relative susceptibility of Tribolium confusum life stages exposed to elevated temperatures. Journal of Economic Entomology, 97(6), 2168-2173.
Boyer, S., Zhang, H., & Lempérière, G. (2012). A review of control methods and resistance mechanisms in stored-product insects. Bulletin of Entomological Research, 102, 213-229. https://doi.org/10.1017/S0007485311000654.
Bulak, Y., Yildirim, E., Kadej, M., & Háva, J. (2013). Contribution to the knowledge of the Dermestidae (Coleoptera) fauna of Turkey. Turkish Journal of Zoology, 37, 621-626. https:// doi.org/10.3906/zoo-1212-8.
Chapman, R. F. (2013). The insects: Structure and function (5th ed). Cambridge University Press.
Collins, D. A., & Conyers, S. T. (2010). The effect of sub-zero temperatures on different lifestages of Lasioderma serricorne (F.) and Ephestia elutella (Hübner). Journal of Stored Products Research, 46, 234-241. https://doi.org/10.1016/j.jspr.2010.06.003.
Conyers, S. T., & Collins, D. A. (2006). The effect of high temperature on the mortality of Lasioderma serricorne (F.). In I. Lorini, B. Bacaltchuk, H. Beckel, D. Deckers, E. Sundfeld, J. P. dos Santos, J. D. Biagi, J. C. Celaro, L. R. D'A. Faroni, L. de O. F. Bortolini, M. R. Sartori, M. C. Elias, R. N. C. Guedes, R. G. da Fonseca, & V. M. Scussel (Eds.), Proceedings of the 9th international working conference on stored-product protection (pp. 843-848). Campinas, São Paulo, Brazil. Brazilian Post-harvest Association-ABRAPOS, Passo Fundo, RS, Brazil.
Correal, D. M. W. (2016). Effects of extreme temperatures on the survival of the quarantine stored-product pest, Trogoderma granarium (khapra beetle) and on its associated bacteria [M.Sc. Thesis, University of Lethbridge]. Lethbridge, Alberta, Canada. https://hdl.handle.net/ 10133/4754.
Cui, X. H., Wan, F. H., Xie, M., & Liu, T. X. (2008). Effects of heat shock on survival and reproduction of two whitefly species, Trialeurodes vaporariorum and Bemisia tabaci biotype B. Journal of Insect Science, 8:24. https://doi.org/10.1673/031.008.2401.
Currie, S., & Tufts, B. (1997). Synthesis of stress protein 70 (Hsp 70) in rainbow trout (Oncorhynchus mykiss) red blood cells. Journal of Experimental Biology, 200(3), 607-614. https://doi.org/10.1242/jeb.200.3.607.
Darwish, Y. A., Ali, A. M., Mohamed, R. A., & Khalil, N. M. (2015). Effect of extreme low and high temperatures on the almond moth, Ephestia cautella (Walker) (Lepidoptera: Pyralidae). Journal of Phytopathology and Pest Management, 2(1), 36-46.
Day, C., & White, B. (2016). Khapra beetle, Trogoderma granarium interceptions and eradications in Australia and around the world. SARE Working paper 1609, School of Agricultural and Resource Economics, University of Western Australia, Crawley, Australia. https://doi.org/10.13140/RG.2.2.23786.31682.
Demis, E., & Yenewa, W. (2022). Review on major storage insect pests of cereals and pulses. Asian Journal of Advances in Research, 5(1), 41-56.
Dosland, O., Subramanyam, B., Sheppard, K., & Mahroof, R. (2006). Temperature modification for insect control. In J. W. Heaps (Ed.), Insect management for food storage and processing (2nd ed.) (pp. 89-103). AACC International.
Dyte, C. E., & Halliday, D. (1985). Problems of development of resistance to phosphine by insect pests of stored grains. EPPO Bulletin, 15(1), 51-57. https://doi.org/10.1111/j.1365-2338.1985.tb00200.x.
Edde, P. A. (2019). Biology, ecology, and control of Lasioderma serricorne (F.) (Coleoptera: Anobiidae): A review. Journal of Economic Entomology, 112(3), 1011-1031. https://doi.org/ 10.1093/jee/toy428.
Eliopoulos, P. (2013). New approaches for tackling the khapra beetle. CABI Reviews, 8, 1-13. https://doi.org/10.1079/PAVSNNR201380.
Emery, R., Dadour, I., Lachberg, S., Szito, A., & Morrell, J. (1998). The biology and identification of native and pest Trogoderma species. Grains Research and Development Corporation, Project Number DAW, 370.
Faruki, S. I., Das, D. R., & Khatun, S. (2005). Effects of UV-radiation on the larvae of the lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) and their progeny. Journal of Biological Sciences, 5(4), 444-448. https://doi.org/10.3923/jbs.2005.444. 448.
Fields, P. G. (1992). The control of stored-product insects and mites with extreme temperatures. Journal of Stored Products Research, 28(2), 89-118.
Fields, P. (2006). Alternatives to chemical control of stored-product insects in temperate regions. In I. Lorini, B. Bacaltchuk, H. Beckel, D. Deckers, E. Sundfeld, J. P. dos Santos, J. D. Biagi, J. C. Celaro, L. R. D'A. Faroni, L. de O. F. Bortolini, M. R. Sartori, M. C. Elias, R. N. C. Guedes, R. G. da Fonseca, & V. M. Scussel (Eds.), Proceedings of the 9th international working conference on stored-product protection (pp. 653-662). Campinas, São Paulo, Brazil. Brazilian Post-harvest Association-ABRAPOS, Passo Fundo, RS, Brazil.
Fields, P., Subramanyam, Bh., & Hulasare, R. (2012). Extreme temperatures. In D. W. Hagstrum, T. W. Phillips, & G. Cuperus (Eds.), Stored product protection (pp. 179-190). Kansas State University.
Fields, P. G., & White, N. D. (2002). Alternatives to methyl bromide treatments for stored-product and quarantine insects. Annual Review of Entomology, 47(1), 331-359.
Finkelman, S., Navarro, S., Rindner, M., Dias, R., & Azrieli, A. (2003). Effect of low pressures on the survival of cocoa pests at 18° C. Journal of Stored Products Research, 39(4), 423-431. https://doi.org/10.1016/S0022-474X(02)00037-1.
Forghani, S. H. R., and Marouf, A. (2015). An introductory study of storage insect pests in Iran. Biharean Biologist, 9(1), 59-62.
Fouad, M. S., Gharib, A. H., & Asmaa, N. M. (2021). Role of the saw-toothed grain beetle, special references to its thermal requirements estimation. Annals of Agricultural Science, Moshtohor, 59(5), 613-616. https://doi.org/10.21608/assjm.2021.195397.
Gourgouta, M., Morrison, W. R., Hagstrum, D. W., & Athanassiou, C. G. (2023). Saw-toothed grain beetle, Oryzaephilus surinamensis, an internationally important stored product pest. Journal of Stored Products Research, 104, 102165. https://doi.org/10.1016/j.jspr.2023. 102165.
Gvozdenac, S., Tanasković, S., Ovuka, J., Vukajlović, F., Čanak, P., Prvulović, D., & Sedlar, A. (2019). Low temperature tolerance of Plodia interpunctella, Sitophilus oryzae and Sitophilus zeamais: The prevalent pests of stored maize in Serbia. Acta Agriculturae Serbica24(48), 143-155. https://doi.org/10.5937/AASer1948143G.
Habibi Karahrodi, R., Vafaei Shoushtari, R., Farazmand, H., Marouf, A., & Loni, S. (2011). Effects of heat treatments on mortality of different life stages of the cowpea weevil, Callosobruchus maculatus Pic. (Col., Bruchidae). Journal of Entomological Research, 3(1), 1-9. (In Farsi with English summary).
Hagstrum, D. (2013). Atlas of stored-product insects and mites. AACC International.
Hamzei, M., Golizadeh, A., Hassanpour, M., Fathi, S. A. A., & Abedi, Z. (2023). Interaction between life history parameters of Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae) with physical and biochemical properties of legumes species. Journal of Stored Products Research, 102, 102111. https://doi.org/10.1016/j.jspr.2023.102111.
Hansen, J. D., Johnson, J. A., & Winter, D. A. (2011). History and use of heat in pest control: a review. International Journal of Pest Management, 57(4), 267-289. https://doi.org/10.1080/ 09670874.2011.590241.
Hinton, H. E. (1945). A monograph of the beetles associated with stored products (Vol. 8). British Museum (N.H.), London, United, Kingdom.
Hochachka, P. W., & Somero, G. N. (1984). Biochemical adaptation. Princeton University Press.
Jaafari-Behi, V., Ziaee, M., Kocheili, F., Hemmati, S. A., & Francikowski, J. (2023). Life-table parameters of Plodia interpunctella (Lepidoptera: Pyralidae) on different stored date palm fruits under laboratory conditions. Journal of Insect Science, 23(3), 1, https://doi.org/10. 1093/jisesa/iead028.
Karimzadeh, R., Javanshir, M., & Hejazi, M. J. (2020). Individual and combined effects of insecticides, inert dusts and high temperatures on Callosobruchus maculatus (Coleoptera: Chrysomelidae). Journal of Stored Products Research, 89, 101693. https://doi.org/10.1016/ j.jspr.2020.101693.
Kim, K. H., Kabir, E., & Jahan, S. A. (2017). Exposure to pesticides and the associated human health effects. Science of the Total Environment, 575, 525-535. https://doi.org/10.1016/j. scitotenv.2016.09.009.
Lale, N. E. S., & Vidal, S. (2003). Simulation studies on the effects of solar heat on egg-laying, development and survival of Callosobruchus maculatus (F.) and Callosobruchus subinnotatus (Pic) in stored bambara groundnut Vigna subterranea (L.) Verdcourt. Journal of Stored Products Research, 39(5), 447-458. https://doi.org/10.1016/S0022-474X(01)00034-0.
Leora Software. 2023. Polo-Plus, Polo for Windows computer program, ver. 2.0. Petaluma.
Lewis, S., Handy, R. D., Cordi, B., Billinghurst, Z., & Depledge, M. H. (1999). Stress proteins (HSP's): methods of detection and their use as an environmental biomarker. Ecotoxicology, 8(5), 351-368. https://doi.org/10.1023/A:1008982421299.
Lewthwaite, S. E., Dentener, P. R., Alexander, S. M., Bennett, K. V., Rogers, D.J., Main Donald, J.H, & Connolly, P. G. (1998). High temperature and cold storage treatments to control Indian meal moth, Plodia interpunctella (Hübner), Journal of Stored Products Research, 34(2–3), 141-150. https://doi.org/10.1016/S0022-474X(97)00056-8.
Li, M., Xiao-Juan Li, X.-J., Lü, J.-H., & Huo, M.-F. (2018). The effect of acclimation on heat tolerance of Lasioderma serricorne (Fabricius) (Coleoptera: Anobiidae). Journal of Thermal Biology, 71, 153-157. https://doi.org/10.1016/ j.jtherbio.2017.11.007.
Loeschcke, V., Krebs, R. A., & Barker, J. S. F. (1994). Genetic variation for resistance and acclimation to high temperature stress in Drosophila buzzatii. Biological Journal of the Linnean Society, 52, 83-92. https://doi.org/10.1006/bijl.1994.1040.
Loganathan, M., Jayas, D. S., Fields, P. G., & White, N. D. G. (2011). Low and high temperatures for the control of cowpea beetle, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) in chickpeas. Journal of Stored Products Research, 47(3), 244-248. https://doi.org/ 10.1016/j.jspr.2011.03.005.
Mahroof, R., Subramanyam, B., & Eustace, D. (2003). Temperature and relative humidity profiles during heat treatment of mills and its efficacy against Tribolium castaneum (Herbst) life stages. Journal of Stored Products Research, 39(5), 555-569. https://doi.org/10.1016/ S0022-474X(02)00062-0.
Mbata, G. N., & Phillips, T. W. (2001). Effects of temperature and exposure time on mortality of stored-product insects exposed to low pressure. Journal of Economic Entomology, 94(5), 1302-1307. https://doi.org/10.1603/0022-0493-94.5.1302.
Mbata, G. N., Phillips, T. W., & Payton, M. (2004). Mortality of eggs of stored-product insects held under vacuum: effects of pressure, temperature, and exposure time. Journal of Economic Entomology, 97(2), 695-702. https://doi.org/10.1603/0022-0493-97.2.695.
Mahgoup, S. M., Zewar, M. M., & Omaima, M. Dewidar, O. M. (2019). Using thermal treatment to eliminate cowpea beetle Callosobruchus maculatus (F.) infesting faba bean during storage and its effect on the physiochemical and technological properties. Egyptian Journal of Agricultural Research, 97(3), 645-662. https://doi.org/10.21608/ejar.2019.152569.
Mohammed, M. E., El-Shafie, H. A., & Alhajhoj, M. R. (2020). Design and efficacy evaluation of a modern automated controlled atmosphere system for pest management in stored dates. Journal of Stored Products Research, 89, 101719. https://doi.org/10.1016/ j.jspr.2020.101719.
Mohapatra, D., Kar, A., & Giri, S. K. (2015). Insect pest management in stored pulses: an overview. Food and Bioprocess Technology, 8(2), 239-265. https://doi.org/10.1007/s11947-014-1399-2.
Navarro, S., & Noyes, R. T. (Eds.) (2001). The mechanics and physics of modern grain aeration management. CRC Press.
Neven, L G. (2000). Physiological responses of insects to heat. Postharvest Biology and Technology, 21(1), 103-111. https://doi.org/10.1016/S0925-5214(00)00169-1.
Papadopoulou, S. Ch., & Buchelos, C. Th. (2002).  Identification of female adult Lasioderma serricorne (F.) by simple external observation of the abdomen. Journal of Stored Products Research, 38, 315-318. https://doi.org/10.1016/S0022-474X(01)00029-7.
Phillips, T. W., & Throne, J. E. (2010). Biorational approaches to managing stored-product insects. Annual Review of Entomology, 55, 375-397. https://doi.org/10.1146/annurev.ento. 54.110807.090451.
Purohit, P., Jayas, D., Yadav, B., Chelladurai, V., Fields, P., & White, N. (2013). Microwaves to control Callosobruchus maculatus in stored mung bean (Vigna radiata). Journal of Stored Products Research, 53, 19-22. https://doi.org/10.1016/j.jspr.2013.01.002.
Rai, P. (2014). Effect of elevated temperatures on Trogoderma variabile Ballion life stages. [Master of Science Thesis, Kansas State University]. K-State Research Exchange. http://hdl. handle.net/2097/18714
Riaz, T., Shakoori, F. R., & Ali, S. S. (2014). Effect of temperature on the development, survival, fecundity and longevity of stored grain pest, Trogoderma granarium. Pakistan Journal of Zoology, 46(6), 1485-1489.
Robertson, J. L., Russell, R. M., Preisler, H. K., & Savin, N. E. (2017). Bioassay with arthropods (3rd ed.). Routledge.
Roesli, R., Subramanyam, B., Fairchild, F. J., & Behnke, K. C. (2003). Trap catches of stored-product insects before and after heat treatment in a pilot feed mill. Journal of Stored Products Research, 39(5), 521-540. https://doi.org/10.1016/S0022-474X(02)00058-9.
Sakka, M. K., Jagadeesan, R., Nayak, M. K., & Athanassiou, C. G. (2022). Insecticidal effect of heat treatment in commercial flour and rice mills for the control of phosphine-resistant insect pests. Journal of Stored Products Research, 99, 102023. https://doi.org/10.1016/ j.jspr.2022.102023.
Sauer, J. A., & Shelton, M. D. (2002). High-temperature controlled atmosphere for post-harvest control of Indian meal moth (Lepidoptera: Pyralidae) on preserved flowers. Journal of Economic Entomology, 95(5), 1074-1078. https://doi.org/10.1093/jee/95.5.1074.
Scaccini, D., Duso, C., & Pozzebon, A. (2019). Lethal effects of high temperatures on brown marmorated stink bug adults before and after overwintering. Insects, 10, 355. https://doi.org/ 10.3390/insects10100355.
Shi, C. H., Hu, J. R., Wei, Q. W., Yang, Y. T., Cheng, J. X., Han, H. L., Wu, Q. J., Wang, S. L., Xu, B. Y., Su, Q., Li, C. R., & Zhang, Y. J. (2018). Control of Bradysia odoriphaga (Diptera: Sciaridae) by soil solarization. Crop Protection, 114, 76-82. https://doi.org/10.1016/ j.cropro.2018.08.020.
Strang, T. J. K. (1992). A review of published temperatures for the control of pest insects in museums. Collection Forum. 8(2), 41-67.
Sun, Y. P. (1950). Toxicity index‒ an improved method of comparing the relative toxicity of insecticides. Journal of Economic Entomology, 43, 45-53. https://doi.org/10.1093/jee/43.1.45.
Wang, J., Germinara, G. S., Feng, Z., Luo, S., Yang, S., Xu, S., Li, C., & Cao, Y. (2022). Comparative effects of heat and cold stress on physiological enzymes in Sitophilus oryzae and Lasioderma serricorne. Journal of Stored Products Research, 96, 101949. https://doi.org/10. 1016/j.jspr.2022.101949.
White, N. D. G., & Bell, R. J. (1988). Inheritance of malathion resistance in a strain of Tribolium castaneum (Coleoptera: Tenebrionidae) and effects of resistance genotypes on fecundity and larval survival in malathion-treated wheat. Journal of Economic Entomology, 81(1), 381-386. https://doi.org/10.1093/jee/81.1.381.
Whitford, F. (2002). The complete book of pesticide management: Science, regulation, stewardship, and communication. Wiley-Interscience.
Wilches, D. M., Laird, R. A., Floate, K. D., & Fields, P. G. (2019). Control of Trogoderma granarium (Coleoptera: Dermestidae) using high temperatures. Journal of Economic Entomology, 112(2), 963-968. https://doi.org/10.1093/jee/toy379.
Wright, E. J., & Cartledge, A. P. (1994). Effect of food volume and photoperiod on initiation of diapause in the warehouse beetle, Trogoderma variabile Ballion (Coleoptera: Dermestidae). In: E. Highley, E. J. Wright, H. J. Banks, & B. R. Champ (Eds.), Proceedings of the 6th international working conference on stored-product protection (pp. 17-23). Canberra, Australia. CAB International, Wallingford, United Kingdom.
Wright, E. J., Sinclair, E. A., & Annis, P. C. (2002). Laboratory determination of the requirements for control of Trogoderma variabile (Coleoptera: Dermestidae) by heat. Journal of Stored Products Research, 38(2), 147-155. https://doi.org/10.1016/S0022-474X(01)00011-X.
Xiang, Y.-Y., & Dai, R.-T. (2016). Effects of brief exposure to high temperature on the survival and reproduction of Oryzaephilus surinamensis (Linnaeus) during the storage period of Lonicera japonica Thunb. Chinese Bulletin of Entomology, 4, 802-808. 
Yu, C., Subramanyam, B., Flinn, P. W., & Gwirtz, J. A. (2011). Susceptibility of Lasioderma serricorne (Coleoptera: Anobiidae) life stages to elevated temperatures used during structural heat treatments. Journal of Economic Entomology, 104(1), 317-324. https://doi.org/10.1603/ EC10067.
Zhao, S., Qiu, C., Xiong, S., & Cheng, X. (2007). A thermal lethal model of rice weevils subjected to microwave irradiation. Journal of Stored Products Research, 43(4), 430-434. https://doi.org/10.1016/j.jspr.2006.12.005.
 © 2023 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/