Al-Tanbouz, R., & Abu-Qauod, H. (2016). In vitro regeneration of chickpea (Cicer arietinum L.). Plant Cell Biotechnology and Molecular Biology, 17(1&2), 21-30.
Bui, M., & Liu, Z. (2009). Simple allele-discriminating PCR for cost-effective and rapid genotyping and mapping.
Plant Methods,
5(1), 1-8. https://doi.org/
10.1186/1746-4811-5-1
Dar, A. A., Mahajan, R., & Sharma, S. (2019). Molecular markers for characterization and conservation of plant genetic resources.
Indian Journal of Agricultural Sciences,
89(11), 1755-1763.
https://doi.org/10.56093/ijas.v89i11.95286
Deokar, A., Sagi, M., & Tar’an, B. (2019). Genome-wide SNP discovery for development of high-density genetic map and QTL mapping of
Ascochyta blight resistance in chickpea (
Cicer arietinum L.).
Theoretical and Applied Genetics,
132, 1861-1872.
https://doi.org/10.1007/s00122-019-03322-3
Devasirvatham, V., Gaur, P. M., Mallikarjuna, N., Tokachichu, R. N., Trethowan, R. M., & Tan, D. K. (2012). Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments.
Functional Plant Biology,
39(12), 1009-1018.
https://doi.org/10.1071/FP12033
Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical bulletin.
Duta-Cornescu, G.E.O.R.G.I.A.N.A., Simon-Gruita, A.L.E.X.A.N.D.R.A., Constantin, N., Stanciu, F., Dobre, M., Banica, D., Tuduce, R., Cristea, P., & Stoian, V. (2009). A comparative study of ARMS-PCR and RFLP-PCR as methods for rapid SNP identification. Romanian Biotechnological Letters, 14(6), 4845-4850.
FAO. (2016). Food and Agricultural Organization. www. fao. org. Accessed 10 May 2022. www. fao. Org.
Farahani, S., Talebi, R., Maleki, M., Mehrabi, R., & Kanouni, H. (2019). Pathogenic diversity of
Ascochyta rabiei isolates and identification of resistance sources in core collection of chickpea germplasm.
The plant pathology journal,
35(4), 321.
https://doi.org/10.5423/PPJ.OA.12.2018.0299
Farahani, S., Talebi, R., Maleki, M., Mehrabi, R., & Kanouni, H. (2021). Mating type distribution, genetic diversity and population structure of
Ascochyta rabiei, the cause of
Ascochyta blight of chickpea in western iran.
Phytopathologia Mediterranea,
60(1), 3-11.
https://doi.org/10.36253/phyto-11616
Firouzmand, H., Toosi, S., Shokouhifar, F., & Mamarabadi, M. (2023). Resistance pattern of a cold tolerant chickpea cultivar (Saral) against different pathotypes of
Ascochyta rabiei using an in vitro pathogenicity test method.
Australasian Plant Pathology, 1-13.
https://doi.org/10.1007/s13313-023-00920-0
Furtado, L. F. V., Alves, W. P., Moreira, T. B., Junior, L. M. C., Miranda, R. R. C., & Rabelo, É. M. L. (2016). Standardization and application of the tetraprimer ARMS-PCR technique for screening of the E198A SNP in the β-tubulin gene of hookworm populations in Brazil.
Veterinary parasitology,
224, 65-67. https://doi.org/
10.1016/j.vetpar.2016.05.013
Ghamghami, M., & Beiranvand, J. P. (2022). Rainfed crop yield response to climate change in Iran.
Regional Environmental Change,
22, 1-17. https://doi.org/
10.1007/s10113-021-01856-1
Li, Y., Ruperao, P., Batley, J., Edwards, D., Davidson, J., Hobson, K., & Sutton, T. (2017). Genome analysis identified novel candidate genes for
Ascochyta blight resistance in chickpea using whole genome re-sequencing data.
Frontiers in Plant Science,
8, 359.
https://doi.org/10.3389/fpls.2017.00359
Little, S. (1995). Amplificationârefractory mutation system (ARMS) analysis of point mutations.
Current protocols in human genetics,
7(1), 9-8. https://doi.org/
10.1002/0471142905.hg0908s07
Liu, J., Huang, S., Sun, M., Liu, S., Liu, Y., Wang, W., Zhang, X., Wang, H., & Hua, W. (2012). An improved allele-specific PCR primer design method for SNP marker analysis and its application.
Plant Methods, 8, 34.
https://doi.org/10.1186/1746-4811-8-34
Mahmoodi, F., & Banihashemi, Z. (2004). Distrbution of mating type, teleomorph formation, and genetic diversity in Didymella rabiei the causal agent of chickpea blight in fars province. Iranian Journal of Plant Pathology, 40, 15-30.
Mehta, G., Verma, P. K., & Ravi, M. (2015). Correlation studies in chickpea grown under rainfed and irrigated conditions in Northern Plains of India. Journal of Agroecology and Natural Resource Management, 2(5), 388-390.
Newman, T.E., Jacques, S., Grime, C., Kamphuis, F.L., Lee, R.C., Berger, J., & Kamphuis, L.G. (2021). Identification of novel sources of resistance to
Ascochyta blight in a collection of wild
Cicer accessions.
Phytopathology,
111(2), 369-379. https://doi.org/
10.1094/PHYTO-04-20-0137-R
Newton, C.R., Graham, A., Heptinstall, L.E., Powell, S.J., Summers, C., Kalsheker, N., Smith, J.C., & Markham, A. (1989). Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS).
Nucleic Acids Research,
17(7), 2503-2516. https://doi.org/
10.1093/nar/17.7.2503
Nourollahi, K., Javannikkhah, M., Naghavi, M.R., Lichtenzveig, J., Okhovat, S.M., Oliver, R.P., & Ellwood, S. R. (2011). Genetic diversity and population structure of Ascochyta rabiei from the western Iranian Ilam and Kermanshah provinces using MAT and SSR markers. Mycological progress, 10, 1-7.
Pande, S., Sharma, M., Gaur, P.M., Tripathi, S., Kaur, L., Basandrai, A., Khan, T., Gowda, C.L.L., & Siddique, K. H. M. (2011). Development of screening techniques and identification of new sources of resistance to
Ascochyta blight disease of chickpea.
Australasian Plant Pathology,
40, 149-156.
http://dx.doi.org/10.1007/s13313-010-0024-8
Ramezani Khozestani, F., Zaker Tavallaie, F., Shokouhifar, F., & Mamarabadi, M. (2023). Optimization of Ascochyta rabiei pathogenicity test on resistant and susceptible chickpea cultivars under in vitro condition. Iranian Journal of Pulses Research. https://doi.org/10.22067/ijpr.2023.77619.1039
Reddy, D. S., Bhatnagar-Mathur, P., Reddy, P. S., Sri Cindhuri, K., Sivaji Ganesh, A., & Sharma, K. K. (2016). Identification and validation of reference genes and their impact on normalized gene expression studies across cultivated and wild cicer species.
PloS one,
11(2), e0148451.
https://doi.org/10.1371/journal.pone.0148451
Rubio, M., Caranta, C., & Palloix, A. (2008). Functional markers for selection of potyvirus resistance alleles at the pvr2-eIF4E locus in pepper using tetra-primer ARMS–PCR.
Genome,
51(9), 767-771. https://doi.org/
10.1139/G08-056
Shokouhifar, F., Bagheri, A., & Rastegar, M. F. (2003a). Identification of genetic diversity in the Ascochyta blight pathogen of chickpea [Ascochyta rabiei (Pass.) Lab.] using RAPD markers. Isfahan University of Technology-Journal of Crop Production and Processing, 7(2), 193-204.
Shokouhifar, F., Bagheri, A., Falahat-Rastegar, M. and Malekzadeh-Shafaroodi, S. (2003b). Pathotyping of Ascochyta rabiei isolates in Iran. Jornal of Agricultural Sciences and Natural Resources, 37, 217-232.
Shokouhifar, F., Bagheri, A. and Falahati-Rastegar, M. (2006). Identification of resistant chickpea lines against pathotypes causing Ascochyta blight disease in Iran. Iranian Journal of Biology, 19, 29-42.
Singh, R., Kumar, K., Purayannur, S., Chen, W., & Verma, P. K. (2022).
Ascochyta rabiei: A threat to global chickpea production.
Molecular Plant Pathology,
23(9), 1241-1261.
https://doi.org/10.1111/mpp.13235
Singh, R., Kumar, K., Purayannur, S., & Verma, P. K. (2023). Genomics-assisted genetics of complex regions from chickpea chromosome 4 reveals two candidate genes for
Ascochyta blight resistance.
Plant Science,
334, 111781. https://doi.org/
10.1016/j.plantsci.2023.111781
Sudheesh, S., Kahrood, H. V., Braich, S., Dron, N., Hobson, K., Cogan, N. O., & Kaur, S. (2021). Application of genomics approaches for the improvement in
Ascochyta blight resistance in chickpea.
Agronomy,
11(10), 1937.
https://doi.org/10.3390/agronomy11101937
Truong, H. T. H., Kim, K. T., Kim, S., Cho, M. C., Kim, H. R., & Woo, J. G. (2011). Development of gene-based markers for the Bs2 bacterial spot resistance gene for marker-assisted selection in pepper (
Capsicum spp.).
Horticulture, Environment, and Biotechnology,
52, 65-73. https://doi.org/
10.1007/s13580-011-0142-4
Udoh, L. I., Obaseojei, W. P., & Uzoebo, C. (2021). Single nucleotide polymorphisms: a modern tool to screen plants for desirable traits. In Plant breeding-current and future views. IntechOpen. https://doi.org/10.5772/intechopen.94935
Zangene, K., Emamjomeh, A., Shokouhifar, F., Mamarabadi, M., & Mehdinezhad, N. (2022). Differentiation of an Iranian resistance chickpea line to
Ascochyta blight from a susceptible line using a functional SNP.
AMB Express,
12(1), 45.
https://doi.org/10.1186/s13568-022-01385-y
Zhang, C., Liu, Y., Ring, B.Z., Nie, K., Yang, M., Wang, M., Shen, H., Wu, X., & Ma, X. (2013). A novel multiplex tetra-primer ARMS-PCR for the simultaneous genotyping of six single nucleotide polymorphisms associated with female cancers.
PloS one,
8(4), e62126. https://doi.org/
10.1371/journal.pone.0062126
© 2023 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-Noncommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).