In silico investigation of pro-peptides from insect zymogens as mimetic inhibitors for digestive chymotrypsin of beet armyworm, Spodoptera exigua

نوع مقاله : علمی پژوهشی -انگلیسی

نویسندگان

1 Associate Professor, Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Researcher, Department of Science, Vitabiotics Company, Iran Branch, Tehran, Iran

3 Ph.D. Graduate, Bioinformatics Laboratory, Department of Biology, School of Sciences, Razi University, Kermanshah, Iran

چکیده

Spodoptera exigua (Hübner), a highly destructive pest of agricultural crops, is often managed through the use of chemical pesticides. However, the use of chemical pesticides can have negative impacts on human health and the environment, making it important to find sustainable and alternative approaches to effectively manage this pest. One promising solution is the use of inhibitors that hinder the activity of proteases in the insect's digestive tract. Many digestive proteases, such as chymotrypsin, are produced as inactive zymogens with N-terminal pro-regions, which act as intramolecular chaperones and inhibitors of cognate catalytic regions. The present study aimed to utilize various bioinformatics tools to identify the physicochemical properties, secondary structures, and topology of chymotrypsin from S. exigua. Furthermore, we evaluated the potential of peptide inhibitors derived from the pro-region of zymogens that could be utilized as mimetic inhibitors for chymotrypsin in S. exigua. Homology molecular modeling was performed using SWISS-MODEL, and the validation of the predicted model was done by various programs. Molecular docking studies between five homologous species-derived protease inhibitors and the predicted model following by molecular dynamics (MD) simulation coupled with Molecular Mechanics Poisson–Boltzmann Surface Area (MMPBSA) calculations were also applied and the analysis of peptides/enzyme interactions revealed the antagonistic capacity of two screened inhibitors against S. exigua chymotrypsin. Protein-protein interaction networks demonstrated that chymotrypsin from S. exigua interacted with eleven other proteins in a high confidence score. Active site analysis revealed that S219, D230, and H232 serve as catalytic residues. These findings demonstrate a central role for computational methods in designing a potent inhibitor peptide that is highly specific and selective to its mature enzyme. Our study could be promising for future insecticide designs used in S. exigua control.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

In silico investigation of pro-peptides from insect zymogens as mimetic inhibitors for digestive chymotrypsin of beet armyworm, Spodoptera exigua

نویسندگان [English]

  • S.A. Hemmati 1
  • Kh. Pouraghajan 2 3
1 Associate Professor, Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Researcher, Department of Science, Vitabiotics Company, Iran Branch, Tehran, Iran
3 Ph.D. Graduate, Bioinformatics Laboratory, Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
Baker, D., Shiau, A. K., & Agard, D. A. (1993). The role of pro regions in protein folding. Current opinion in cell biology, 5(6), 966-970. https://doi.org/10.1016/0955-0674(93)90078-5
Brewer, M. J., Trumble, J. T., Alvarado-Rodriguez, B., & Chaney, W. E. (1990). Beet armyworm (Lepidoptera: Noctuidae) adult and larval susceptibility to three insecticides in managed habitats and relationship to laboratory selection for resistance. Journal of Economic Entomology, 83(6), 2136-2146. https://doi.org/10.1093/jee/83.6.2136
Franco, O. L., Rigden, D. J., Melo, F. R., & Grossi‐de‐Sá, M. F. (2002). Plant α‐amylase inhibitors and their interaction with insect α‐amylases: Structure, function and potential for crop protection. European journal of biochemistry, 269(2), 397-412. https://doi.org/10.1046/j.0014-2956.2001.02656.x
Fu, X., Feng, H., Liu, Z., & Wu, K. (2017). Trans-regional migration of the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), in North-East Asia. PLoS One, 12(8), e0183582. https://doi.org/10.1371/journal.pone.0183582
Greenberg, S. M., Sappington, T. W., Legaspi, B. C., Liu, T. X., & Setamou, M. (2001). Feeding and life history of Spodoptera exigua (Lepidoptera: Noctuidae) on different host plants. Annals of the Entomological Society of America, 94(4), 566-575. https://doi.org/10.1603/0013-8746(2001)094[0566:FALHOS]2.0.CO;2
Hemmati, S. A. (2021). Structural, functional, and phylogenetic studies of chymotrypsin enzyme genes in insects: a bioinformatics approach. Plant Protection (Scientific Journal of Agriculture), 43(3), 43-60. https://doi.org/10.22055/ppr.2020.16417
Hemmati, S. A., & Karam Kiani, N. (2020). Evaluation of the inhibitory potential of pro-peptide region as the inhibitor of the digestive chymotrypsin of cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae), based on in silico studies. Journal of Entomological Society of Iran, 40(3), 237-253. https://doi.org/10.22117/jesi.2020.342422.1371
Hemmati, S. A., Karam Kiani, N., Serrão, J. E., & Jitonnom, J. (2021a). Inhibitory potential of a designed peptide inhibitor based on zymogen structure of trypsin from Spodoptera frugiperda: in silico insights. International Journal of Peptide Research and Therapeutics, 27, 1677-1687. https://doi.org/10.1007/s10989-021-10200-4
Hemmati, S. A., Sajedi, R. H., Moharramipour, S., Taghdir, M., Rahmani, H., Etezad, S. M., & Mehrabadi, M. (2017). Biochemical characterization and structural analysis of trypsin from Plodia interpunctella midgut: implication of determinants in extremely alkaline pH activity profile. Physiological Entomology, 42(4), 307-318. https://doi.org/10.1111/phen.12196
Hemmati, S. A., Shishehbor, P., & Stelinski, L. L. (2022). Life table parameters and digestive enzyme activity of Spodoptera littoralis (Boisd)(Lepidoptera: Noctuidae) on selected legume cultivars. Insects, 13(7), 661. https://doi.org/10.3390/insects13070661
Hemmati, S. A., Takalloo, Z., Taghdir, M., Mehrabadi, M., Balalaei, S., Moharramipour, S., & Sajedi, R. H. (2021b). The trypsin inhibitor pro-peptide induces toxic effects in Indianmeal moth, Plodia interpunctella. Pesticide Biochemistry and Physiology, 171, 104730. https://doi.org/10.1016/j.pestbp.2020.104730
Huang, J. M., Zhao, Y. X., Sun, H., Ni, H., Liu, C., Wang, X., Gao, C. H., & Wu, S. F. (2021). Monitoring and mechanisms of insecticide resistance in Spodoptera exigua (Lepidoptera: Noctuidae), with special reference to diamides. Pesticide Biochemistry and Physiology, 174, 104831. https://doi.org/10.1016/j.pestbp.2021.104831
Jitonnom, J., Lomthaisong, K., & Lee, V. S. (2012). Computational design of peptide inhibitor based on modifications of proregion from Plutella xylostella midgut trypsin. Chemical biology & drug design, 79(4), 583-593. https://doi.org/10.1111/j.1747-0285.2011.01312.x
Kumari, R., Kumar, R., Open Source Drug Discovery Consortium, & Lynn, A. (2014). g_mmpbsa-A GROMACS tool for high-throughput MM-PBSA calculations. Journal of chemical information and modeling, 54(7), 1951-1962. https://pubs.acs.org/doi/10.1021/ci500020m
Macindoe, G., Mavridis, L., Venkatraman, V., Devignes, M. D., & Ritchie, D. W. (2010). HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic acids research, 38(suppl_2), W445-W449. https://doi.org/10.1093/nar/gkq311
Omkar, O. (2016). Ecofriendly Pest Management for Food Security. Elsevier Ltd. https://shop.elsevier.com/books/ecofriendly-pest-management-for-food-security/omkar/978-0-12-803265-7
Pereira, M. E., Dörr, F. A., Peixoto, N. C., Lima-Garcia, J. F., Dörr, F., & Brito, G. G. (2005). Perspectives of digestive pest control with proteinase inhibitors that mainly affect the trypsin-like activity of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae). Brazilian Journal of Medical and Biological Research, 38, 1633-1641. https://doi.org/10.1590/S0100-879X2005001100010
Robinson, G. S., Ackery, P. R., Kitching, I. J., Beccaloni, G. W., & Hernández, L. M. (2010). HOSTS-a Database of the World’s Lepidopteran Hostplants. Natural History Museum, London, 11(03), 2017.
Silva, F. B., Monteiro, A. C. S., Del Sarto, R. P., Marra, B. M., Dias, S. C., Figueira, E. L. Z., Oliveira, G. R., Rocha, T. L., Souza, D. S. L., da Silva, M. C. M., Franco, O. L., & Grossi-de-Sa, M. F. (2007). Proregion of Acanthoscelides obtectus cysteine proteinase: A novel peptide with enhanced selectivity toward endogenous enzymes. peptides, 28(6), 1292-1298. https://doi.org/10.1016/j.peptides.2007.03.020
Smits, P. H., Van Velden, M. C., Van de Vrie, M., & Vlak, J. M. (1987). Feeding and dispersion of Spodoptera exigua larvae and its relevance for control with a nuclear polyhedrosis virus. Entomologia Experimentalis et Applicata, 43(1), 67-72. https://doi.org/10.1111/j.1570-7458.1987.tb02204.x
Taylor, M. A., & Lee, M. J. (1997). Trypsin isolated from the midgut of the tobacco hornworm, Manduca sexta, is inhibited by synthetic pro-peptidesin vitro. Biochemical and biophysical research communications, 235(3), 606-609. https://doi.org/10.1006/bbrc.1997.6839
Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: fast, flexible, and free. Journal of computational chemistry, 26(16), 1701-1718. https://doi.org/10.1002/jcc.20291
Visal, S., Taylor, M. A., & Michaud, D. (1998). The proregion of papaya proteinase IV inhibits Colorado potato beetle digestive cysteine proteinases. FEBS letters, 434(3), 401-405. https://doi.org/10.1016/S0014-5793(98)01018-7
Wheeler, W. B. (Ed.). (2002). Pesticides in Agriculture and the Environment. CRC Press.
Zeng, J., Kong, X., Dong, Z., Wu, J., & Li, Y. (2019). Effects of five different host plants on the midgut protease activities of the larva in Spodoptera exigua. Journal of Environmental Entomology, 41(1), 42-49. https://www.cabdirect.org/cabdirect/abstract/20193268192
 © 2023 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/.