Biological control of Xanthomonas translucens, the causal agent of bacterial leaf streak of wheat, by some endophytic fungi

Document Type : Research paper-English

Authors

1 M.Sc. student, Department of Plant Protection, College of Agriculture, Razi University, Kermanshah, Iran

2 Assistant Professor, Department of Plant Protection, College of Agriculture, Razi University, Kermanshah, Iran

3 Associate Professor, Department of Plant Protection, College of Agriculture, Razi University, Kermanshah, Iran

4 M.Sc. of Plant Pathology, Department of Plant Protection, College of Agriculture, Razi University, Kermanshah, Iran

10.22055/ppr.2024.46960.1747

Main Subjects


Afkhamifar, A., Moslemkhani, C., Hasanzadeh, N., & Razmi, J. (2023). Curtobacterium flaccumfaciens pv. flaccumfaciens with antagonistic effect on Xanthomonas translucens pv. cerealis, plays a dual role in the legumes-wheat rotation system. European Journal of Plant Pathology, 165(4), 611-621. https://doi.org/10.1007/s10658-022-02631-6.
Afkhamifar, A., Moslemkhani, C., Hasanzadeh, N., Razmi, J., & Sadeghi, L. (2023). Inhabiting fluorescent Pseudomonas on wheat seed promote bacterial leaf streak disease. Journal of Crop Protection, 12(4), 365-378.
Akram, S., Ahmed, A., He, P., He, P., Liu, Y., Wu, Y., et al. (2023). Uniting the role of endophytic fungi against plant pathogens and their interaction. Journal of Fungi, 9(1), 72. https://doi.org/10.3390/jof9010072.
Alizadeh, A., & Rahimian, H. (1989). Bacterial leaf streak of Gramineae in Iran. EPPO Bulletin, 19(1), 113-117.
Alizadeh Aliabadi, A., Nasrollahi, M., Azadvar, M., & Bagheri, A. (2022). Evaluation of the wheat promising lines response to Xanthomonas campestris pv. undulosa the causal agent of bacterial leaf streak of cereal in three provinces of Iran. Plant Protection (Scientific Journal of Agriculture), 45(2), 137-156. doi:https://doi.org/10.22055/ppr.2022.17648. (In Farsi with English summary).
Anwar, J., & Iqbal, Z. (2017). Effect of growth conditions on antibacterial activity of Trichoderma harzianum against selected pathogenic bacteria. Sarhad Journal of Agriculture, 33(4), 501-510. http://doi.org/10.17582/journal.sja/2017/33.4.501.510.
Bamberg, R. (1936). Black chaff disease of wheat. Journal of Agricultural Research, 52, 397-417.
Bashan, Y., Huang, P., Kloepper, J. W., & de-Bashan, L. (2017). A proposal for avoiding fresh-weight measurements when reporting the effect of plant growth-promoting (rhizo) bacteria on growth promotion of plants. Biology and Fertility of Soils, 53, 1-2. https://doi.org/10.1007/s00374-016-1153-1.
Carrie, W., Mehetre, G., Deka, P., Lalnunmawii, E., & Singh, B. P. (2023). Management of plant diseases using endophytes as biocontrol agents: Present status and future prospects. In M. Shah & D. Deka (Eds.), Endophytic Association: What, Why, How (pp. 367-385): Elsevier.
Collinge, D. B., Jensen, D. F., Rabiey, M., Sarrocco, S., Shaw, M. W., & Shaw, R. H. (2022). Biological control of plant diseases–What has been achieved and what is the direction? plant pathology, 71(5), 1024-1047. https://doi.org/10.1111/ppa.13555.
Comby, M., Gacoin, M., Robineau, M., Rabenoelina, F., Ptas, S., Dupont, J., et al. (2017). Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests. Microbiological research, 202, 11-20.
Duveiller, E. (1994). A pictorial series of disease assessment keys for bacterial leaf streak of cereals. Plant disease, 78(2), 137-141.
Duveiller, E., Fucikovsky, L., & Rudolph, K. (1997). The bacterial diseases of wheat: concepts and methods of disease management. Mexico: CIMMYT.
Fatema, U., Broberg, A., Jensen, D. F., Karlsson, M., & Dubey, M. (2018). Functional analysis of polyketide synthase genes in the biocontrol fungus Clonostachys rosea. Scientific reports, 8(1), 15009. https://doi.org/10.1038/s41598-018-33391-1.
Fontana, D. C., de Paula, S., Torres, A. G., de Souza, V. H. M., Pascholati, S. F., Schmidt, D., et al. (2021). Endophytic fungi: Biological control and induced resistance to phytopathogens and abiotic stresses. Pathogens, 10(5), 570. https://doi.org/10.3390/pathogens10050570.
Galindo-Solís, J. M., & Fernández, F. J. (2022). Endophytic fungal terpenoids: Natural role and bioactivities. Microorganisms, 10(2), 339. https://doi.org/10.3390/microorganisms10020339.
Ghasemi, F., Mahdikhni, E., & Tarighi, S. (2024). Biological control of bacterial leaf streak using Stenotrophomonas maltophilia. Paper presented at the The 2nd International and 11th National Conference on Biocontrol in Agriculture and Natural Resources, University of Jiroft, Iran.
Goettelmann, F., Roman-Reyna, V., Cunnac, S., Jacobs, J. M., Bragard, C., Studer, B., et al. (2022). Complete Genome Assemblies of All Xanthomonas translucens Pathotype Strains Reveal Three Genetically Distinct Clades. Frontiers in Microbiology, 12. doi:10.3389/fmicb.2021.817815.
Guzmán-Guzmán, P., Kumar, A., de Los Santos-Villalobos, S., Parra-Cota, F. I., Orozco-Mosqueda, M. d. C., Fadiji, A. E., et al. (2023). Trichoderma species: Our best fungal allies in the biocontrol of plant diseases—A review. Plants, 12(3), 432. https://doi.org/10.3390/plants12030432.
Habibian, M., Alizadeh Aliabadi, A., Hayati, J., & Rahimian, H. (2021). Investigation of the phenotypic and genetic diversity of Xanthomonas translucens pathovars, the causal agents of bacterial leaf streak of wheat and barley in parts of Iran. Plant Protection (Scientific Journal of Agriculture), 44(2), 33-50. doi:https://doi.org/10.22055/ppr.2021.16931. (In Farsi with English summary).
He, C., Wang, W., & Hou, J. (2019). Characterization of dark septate endophytic fungi and improve the performance of liquorice under organic residue treatment. Frontiers in Microbiology, 10, 1364. https://doi.org/10.3389/fmicb.2019.01364
Hosseini, S., & Marefat, A. (2021). Characterization and genetic diversity of Xanthomonas translucens, the causal agent of bacterial stripe of wheat in Kermanshah province, Iran. Plant Protection (Scientific Journal of Agriculture), 44(4), 89-105. doi:10.22055/ppr.2021.17178. (In Farsi with English summary).
Hozhabri, Z., Habibi, A., Beheshti Ale Agha, A., & Sharifi, R. (2023). Bioaugmentation of in-situ degradation of petroleum hydrocarbon from soil by indigenous microbial consortium. Journal of Natural Environment, 76(1), 93-103. doi:10.22059/jne.2022.340663.2419. (In Farsi with English summary).
Huang, Y., Wu, Z., He, Y., Ye, B.-C., & Li, C. (2017). Rhizospheric Bacillus subtilis exhibits biocontrol effect against Rhizoctonia solani in pepper (Capsicum annuum). BioMed research international, 2017, 1-9. doi:https://doi.org/10.1155/2017/9397619
Hussein, A. N., Abbasi, S., Sharifi, R., & Jamali, S. (2018). The effect of biocontrol agents consortia against Rhizoctonia root rot of common bean Phaseolus vulgaris. Journal of Crop Protection, 7(1), 73-85.
Javadi, A., Ghahremanzadeh, M., Sassi, M., Javanbakht, O., & Hayati, B. (2024). Impact of climate variables change on the yield of wheat and rice crops in Iran (application of stochastic model based on Monte Carlo simulation). Computational Economics, 63(3), 983-1000. https://doi.org/10.1007/s10614-023-10389-0.
Ji, G.-H., Wei, L.-F., He, Y.-Q., Wu, Y.-P., & Bai, X.-H. (2008). Biological control of rice bacterial blight by Lysobacter antibioticus strain 13-1. Biological Control, 45(3), 288-296. doi:https://doi.org/10.1016/j.biocontrol.2008.01.004.
Kandel, S. L., Firrincieli, A., Joubert, P. M., Okubara, P. A., Leston, N. D., McGeorge, K. M., et al. (2017). An in vitro study of bio-control and plant growth promotion potential of Salicaceae endophytes. Frontiers in Microbiology, 8, 386. https://doi.org/10.3389/fmicb.2017.00386.
Lahlali, R., Ezrari, S., Radouane, N., Kenfaoui, J., Esmaeel, Q., El Hamss, H., et al. (2022). Biological control of plant pathogens: A global perspective. Microorganisms, 10(3), 596. https://doi.org/10.3390/microorganisms10030596.
Langlois, P. A., Snelling, J., Hamilton, J. P., Bragard, C., Koebnik, R., Verdier, V., et al. (2017). Characterization of the Xanthomonas translucens complex using draft genomes, comparative genomics, phylogenetic analysis, and diagnostic LAMP assays. Phytopathology, 107(5), 519-527. https://doi.org/10.1094/PHYTO-08-16-0286-R.
Ledman, K. E., Curland, R. D., Ishimaru, C., & Dill-Macky, R. (2020). Xanthomonas translucens pv. undulosa identified on common weedy grasses in naturally infected wheat fields in Minnesota. Phytopathology, 111(7), 114-1121. https://doi.org/10.1094/PHYTO-08-20-0337-R.
Legrand, F., Picot, A., Cobo-Díaz, J. F., Chen, W., & Le Floch, G. (2017). Challenges facing the biological control strategies for the management of Fusarium Head Blight of cereals caused by F. graminearum. Biological Control, 113, 26-38. https://doi.org/10.1016/j.biocontrol.2017.06.011.
Li, T., Im, J., & Lee, J. (2022). Genetic diversity of Epicoccum nigrum and its effects on Fusarium graminearum. Mycobiology, 50(6), 457-466.
Liu, N., Jacquemyn, H., Liu, Q., Shao, S.-C., Ding, G., & Xing, X. (2022). Effects of a dark septate fungal endophyte on the growth and physiological response of seedlings to drought in an epiphytic orchid. Frontiers in Microbiology, 13, 961172. https://doi.org/10.3389/fmicb.2022.961172.
Malarvizhi, K., Murali, T., & Kumaresan, V. (2023). Fungal endophytes of crop plants: diversity, stress tolerance and biocontrol potential. Egyptian Journal of Biological Pest Control, 33(1), 67. https://doi.org/10.1186/s41938-023-00711-1.
Malicka, M., Magurno, F., & Piotrowska-Seget, Z. (2022). Plant association with dark septate endophytes: When the going gets tough (and stressful), the tough fungi get going. Chemosphere, 302, 134830. https://doi.org/10.1016/j.chemosphere.2022.134830.
Mehta, P., Sharma, R., Putatunda, C., & Walia, A. (2019). Endophytic fungi: role in phosphate solubilization. In B. P. Singh (Ed.), Advances in endophytic fungal research: present status future challenges (pp. 183-209). Springer Nature Switzerland AG 2019: Springer Cham.
Moodie, P.F., & Johnson, D.E. (2022). Applied Regression and ANOVA Using SAS (1st ed.). Chapman and Hall/CRC. New York, USA. https://doi.org/10.1201/9780429107368
Muhammad, M., Basit, A., Ali, K., Ahmad, H., Li, W.-j., Khan, A., et al. (2024). A review on endophytic fungi: a potent reservoir of bioactive metabolites with special emphasis on blight disease management. Archives of Microbiology, 206(3), 129. https://doi.org/10.1007/s00203-023-03828-x.
Niri, M. D., Tarighi, S., & Taheri, P. (2023). Defense activation in wheat against Xanthomonas translucens via application of biological and chemical inducers. Journal of plant pathology, 105(2), 493-505. https://doi.org/10.1007/s42161-023-01324-1.
Papaianni, M., Ricciardelli, A., Fulgione, A., d’Errico, G., Zoina, A., Lorito, M., et al. (2020). Antibiofilm activity of a Trichoderma metabolite against Xanthomonas campestris pv. campestris, alone and in association with a phage. Microorganisms, 8(5), 620. https://doi.org/10.3390/microorganisms8050620.
Peng, Z., Hu, Y., Xie, J. z., Potnis, N., Akhunova, A., Jones, J., et al. (2016). Long read and single molecule DNA sequencing simplifies genome assembly and TAL effector gene analysis of Xanthomonas translucens. BMC genomics, 17(1), 21. https://doi.org/10.1186/s12864-015-2348-9.
Ramakrishnan, S. M., Sidhu, J. S., Ali, S., Kaur, N., Wu, J., & Sehgal, S. K. (2019). Molecular characterization of bacterial leaf streak resistance in hard winter wheat. Peer J, 7, e7276. https://doi.org/10.7717/peerj.7276.
Raza, W., & Shen, Q. (2020). Volatile organic compounds mediated plant-microbe interactions in soil. In V. Sharma, R. Salwan, & L. Al-Ani (Eds.), Molecular Aspects of Plant Beneficial Microbes in Agriculture (pp. 209-219): Elsevier.
Rizvi, A., Chandrawal, R., Khan, M. H., Ahmed, B., Umar, S., & Khan, M. S. (2024). Microbiological control of Xanthomonas induced Bacterial Leaf Streak disease of wheat via phytocompounds and ROS processing enzymes produced under biotic stress. Journal of Plant Growth Regulation, 43(2), 601-623. https://doi.org/10.1007/s00344-023-11119-4.
Sapkota, S., Mergoum, M., & Liu, Z. (2020). The translucens group of Xanthomonas translucens: Complicated and important pathogens causing bacterial leaf streak on cereals. Molecular Plant Pathology, 21(3), 291-302. https://doi.org/10.1111/mpp.12909.
Schaad, N. W., Jones, J. B., & Chun, W. (2001). Laboratory guide for the identification of plant pathogenic bacteria,  third edition. Minnesota, USA: American Phytopathological Society,  St Paul.
Shadmani, L., Jamali, S., & Fatemi, A. (2018). Biocontrol activity of endophytic fungus of barley, Microdochium bolleyi, against Gaeumannomyces graminis var. tritici. Mycologia Iranica, 5(1), 7-14. doi:10.22043/mi.2019.118205
Shadmani, L., Jamali, S., & Fatemi, A. (2021). Isolation, identification, and characterization of cadmium-tolerant endophytic fungi isolated from barley (Hordeum vulgare L.) roots and their role in enhancing phytoremediation. Brazilian Journal of Microbiology, 52, 1097-1106. doi:https://doi.org/10.1007/s42770-021-00493-4
Shah, S. M. A., Haq, F., Ma, W., Xu, X., Wang, S., Xu, Z., et al. (2019). Tal1NXtc01 in Xanthomonas translucens pv. cerealis contributes to virulence in bacterial leaf streak of Wheat. Frontiers in Microbiology, 10(2040). doi:10.3389/fmicb.2019.02040
Sharifi, R., Jeon, J.-S., & Ryu, C.-M. (2021). Belowground plant–microbe communications via volatile compounds. Journal of Experimental Botany, 73(2), 463-486. doi:10.1093/jxb/erab465.
Sharifi, R., & Ryu, C.-M. (2018a). Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. Annals of Botany, 122(3), 349-358.  https://doi.org/10.1093/aob/mcy108.
Sharifi, R., & Ryu, C.-M. (2018b). Sniffing bacterial volatile compounds for healthier plants. Current opinion in plant biology, 44, 88-97.
Sharifi, R., & Ryu, C. -M. (2016). Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both?. Frontiers in microbiology, 7, 196. https://doi.org/10.3389/fmicb.2016.00196.
Sharma, A., Gupta, B., Verma, S., Pal, J., Mukesh, Akanksha, et al. (2023). Unveiling the biocontrol potential of Trichoderma. European Journal of Plant Pathology, 167(4), 569-591. https://doi.org/10.1007/s10658-023-02745-5.
Stromberg, K. D., Kinkel, L. L., & Leonard, K. J. (2000). Interactions between Xanthomonas translucens pv. translucens, the causal agent of bacterial leaf streak of wheat, and bacterial epiphytes in the wheat phyllosphere. Biological Control, 17(1), 61-72.
Sun, Z.-B., Li, S.-D., Ren, Q., Xu, J.-L., Lu, X., & Sun, M.-H. (2020). Biology and applications of Clonostachys rosea. Journal of applied microbiology, 129(3), 486-495. https://doi.org/10.1111/jam.14625.
Tadesse, W., Amri, A., Ogbonnaya, F. C., Sanchez-Garcia, M., Sohail, Q., & Baum, M. (2016). Wheat. In Genetic and Genomic Resources for Grain Cereals Improvement (pp. 81-124). India: Springer.
Taguiam, J. D., Evallo, E., & Balendres, M. A. (2021). Epicoccum species: ubiquitous plant pathogens and effective biological control agents. European Journal of Plant Pathology, 159, 713-725. https://doi.org/10.1007/s10658-021-02207-w.
Taheri, E., Tarighi, S., & Taheri, P. (2022). Characterization of root endophytic Paenibacillus polymyxa isolates with biocontrol activity against Xanthomonas translucens and Fusarium graminearum. Biological Control, 174, 105031. https://doi.org/10.1016/j.biocontrol.2022.105031.
Thind, B. (2019). Phytopathogenic Bacteria and Plant Diseases: CRC Press.
Vauterin, L., Hoste, B., Kersters, K., & Swings, J. (1995). Reclassification of Xanthomonas. International Journal of Systematic and Evolutionary Microbiology, 45(3), 472-489.
Veselova, M., Plyuta, V., & Khmel, I. (2019). Volatile compounds of bacterial origin: Structure, biosynthesis, and biological activity. Microbiology, 88, 261-274. https://doi.org/10.1134/S0026261719030160.
Waghunde, R. R., Shelake, R. M., & Sabalpara, A. N. (2016). Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research, 11(22), 1952-1965. https://doi.org/10.5897/AJAR2015.10584.
Wemheuer, B., Thomas, T., & Wemheuer, F. (2019). Fungal endophyte communities of three agricultural important grass species differ in their response towards management regimes. Microorganisms, 7(2), 37. https://doi.org/10.3390/microorganisms7020037.
Yuan, J., Zhao, M., Li, R., Huang, Q., Raza, W., Rensing, C., et al. (2017). Microbial volatile compounds alter the soil microbial community. Environmental Science Pollution Research, 24, 22485-22493. https://doi.org/10.1007/s11356-017-9839-y.
Zhai, M.-M., Qi, F.-M., Li, J., Jiang, C.-X., Hou, Y., Shi, Y.-P., et al. (2016). Isolation of secondary metabolites from the soil-derived fungus Clonostachys rosea YRS-06, a biological control agent, and evaluation of antibacterial activity. Journal of Agricultural and Food Chemistry, 64(11), 2298-2306. https://doi.org/abs/10.1021/acs.jafc.6b00556.
Zhang, Q., Zhang, J., Yang, L., Zhang, L., Jiang, D., Chen, W., et al. (2014). Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biological Control, 72, 98-108. https://doi.org/10.1016/j.biocontrol.2014.02.018.
 © 2024 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/.