Ahmadi, E., & Halaji Sani, M. F. (2007). An investigation on effectiveness of copper barrier against Caucasotachea lencoranea (Mouss.) in citrus orchards of Mazandaran province. Pajouhesh-va-Sazandegi, 97-102. https://sid.ir/paper/19079/en
An, P., Yang, X., Yu, J., Qi, J., Ren, X., & Kong, Q. (2019). α-terpineol and terpene-4-ol, the critical components of tea tree oil, exert antifungal activities in vitro and in vivo against
Aspergillus niger in grapes by inducing morphous damage and metabolic changes of fungus.
Food Control.
98, 42-53.
https://doi.org/10.1016/j.foodcont.2018.11.013
Asghari, B., Zengin, G., Bahadori, M. B., Abbas-Mohammadi, M., & Dinparast, L. (2018). Amylase, glucosidase, tyrosinase, and cholinesterases inhibitory, antioxidant effects, and GC-MS analysis of wild mint (
Mentha longifolia var. calliantha) essential oil: A natural remedy.
European Journal of Integrative Medicine. 22, 44-49.
https://doi.org/10.1016/j.eujim.2018.08.004
Barker, G. M. (2004). The biology of terrestrial molluscs. Commonwealth Agricultural Bureaux International, New York, USA. pp. 1-24.
Béjaoui, A., Boulila, A., & Boussaid, M. (2013) Chemical composition and biological activities of essential oils and solvent extracts of Origanum vulgare subsp. glandulosum Desf. from Tunisia. Journal of Medicinal Plants Research. 7, 2429-2435. https://doi.org/10.5897/JMPR2013.5043
Ben, E. E., Asuquo, A. E., & Owu, D. U. (2019) The Role of Serum Alpha-Amylase and Glycogen Synthase in the Anti-Diabetic Potential of Terminalia catappa Aqueous Leaf Extract in Diabetic Wistar Rats. Asian Journal of Research in Medical and Pharmaceutical Sciences. 6, 1-11. https://doi.org/ 10.9734/AJRIMPS/2019/v6i230096
Bernfeld, P. (1955) Amylase, α and β. Methods in Enzymology. 1, 149-158. https://nph.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1469-8137.1994.tb02968.x
Bisswanger, H. (2017). Enzyme kinetics: principles and methods, John Wiley & Sons. pp. 10-26. http://utsavbali.com/wp-content/uploads/2014/06/Enzyme-Kinetics-Principles-and-Methods.pdf
Britton, H. T. S., & Robinson, R. A. (1931). CXCVIII.—Universal buffer solutions and the dissociation constant of veronal.
Journal of the Chemical Society. 1456-1462. https://
doi.org/10.1039/JR9310001456
Dauqan, E. M., & Abdullah, A. (2017) Medicinal and functional values of thyme (Thymus vulgaris L.) herb. Journal of Applied Biology and Biotechnology. 5, 17-22. https://jabonline.a2hosted.com/jab_php/admin/php/uploads/188_pdf.pdf
Ebadollahi, A., Taghinezhad, E., & Davari, M. (2018) Optimization of antifungal and insecticidal effects of garden thyme (Thymus vulgaris L.) essential oil through response surface methodology. Biological Control of Pests and Plant Diseases. 7, 1-19. https://jbiocontrol.ut.ac.ir/article_67163_14c2fc12a76b2f8ab0087e40040c2b08.pdf?lang=en
Fu, J. T., Tang, L., Li, W. S., Wang, K., Cheng, D. M., & Zhang, Z. X. (2015). Fumigant toxicity and repellence activity of camphor essential oil from Cinnamonum camphora Siebold against Solenopsis invicta workers (Hymenoptera: Formicidae). Journal of Insect Science. 15(1), 129 https://doi.org/10.1093/jisesa/iev112.
Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K., & Chauhan, B. (2003) Microbial α-amylases: a biotechnological perspective.
Process Biochemistry. 38, 1599-1616.
https://doi.org/10.1016/S0032-9592(03)00053-0
Hajipour Dehbalaei, S., Afsharmanesh, M., & Sami, M. (2016) Effect of essential oils of thyme, oregano and their combination on quality of quail meat in comparison with virginiamycin. Food Hygiene. 5, 45-54. (in persian). https://sid.ir/paper/222936/en
Ibáñez, M. D., & Blázquez, M. A. (2017). Herbicidal value of essential oils from oregano-like flavour species. Food and Agricultural Immunology. 28, 1168-1180. https://doi.org/10.1080/09540105.2017.1332010
Justin, S. S., Bernard, S. T., Mathias, K.K., Renel, S. R., Aboutous, K. K. R. A., Kore, D. J. (2014). Purification and physicochemical characterization of the α-glucosidase of the digestive juice of the snail Limicolria flammea (Müller 1774). International Journal of Plant, Animal and Environmental Sciences, 4, 376-388. https://doi.org/10.15671/HJBC.2018.256
Kalra, S. (2014). Alpha glucosidase inhibitors. The Journal of the Pakistan Medical Association, 64, 474-476. PMID: 24864650
Kazzazi, M. (2007) Study of digestive amylase and glucosidase in Eurygaster integriceps (Hemiptera: Scutelleridae) and of alpha-amylase inhibitor in wheat dominant. Ph.D. thesis, University of Tehran. Pp 142. (In Farsi).
Kazzazi, M., Dehghanikhah, F., Madadi, H., & Hossseininaveh, V. (2014). Biochemical characterisation of α-glucosidase and β-glucosidase in the alimentary canal of larval Leptinotarsa decemlineata SAY, 1824 (Coleoptera: Chrysomelidae). Polish Journal of Entomology, 83(4), 281-294. https://doi.org/10.2478/pjen-2014-0022
Low, N. H., Va Vong, K., Sporns, P. (1986). A new enzyme, β-glucosidase, in honey. Journal of Apicultural Research, 25, 178-181. https://doi.org/10.1080/00218839.1986.11100713
Machado, M., Dinis, A. M., Salgueiro, L., Custódio, J.B., Cavaleiro, C., & Sousa, M.C. (2011). Anti-Giardia activity of
Syzygium aromaticum essential oil and eugenol: effects on growth, viability, adherence and ultrastructure.
Experimental Parasitology, 127(4), 732-739.
https://doi.org/10.1016/j.exppara.2011.01.011
Mirkazemi, F., Bandani, A., Sabahi, G. (2010) Fumigant Toxicity of Essential Oils from Five Officinal Plants Against Two Stored Product Insects: Cowpea Weevil, Callosobruchus maculatus (Fabricius) and Red Flour Beetle, Tribolium castaneum (Herbest). Plant Protection (Scientific Journal of Agriculture), 32(2), 37-54. https://plantprotection.scu.ac.ir/article_10229_c215becd51e77f6ca2b3febe414014c2.pdf
Miyazawa, M., Watanabe, H., Umemoto, K., & Kameoka, H. (1998). Inhibition of acetylcholinesterase activity by essential oils of Mentha species.
Journal of Agricultural and Food Chemistry, 46, 3431-3434.
https://doi.org/10.1021/jf9707041
Mohadjerani, M., & Sanaei, Z. (2022). Evaluation of Kinetic Parameters of α-Amylase in the Presence of the Flavonoid Rich-Extract of Ficus carica L., an In-vitro Study: Kinetic Parameters of α-Amylase in the Presence of Fig Flavonoids.
Iranian Journal of Pharmaceutical Sciences,
18(4), 316-325.
https://doi.org/10.22037/ijps.v18.43101
Mohadjerani, M., & Tavakoli, R. (2015). The constituents of medicinal plants: an introduction to the chemistry and therpeutics of herbal medicine. (pp. 145-170). Press: University of Mazandaran. (in Farsi)
Nagaraju, J., & Abraham, E. G. (1995). Purification and characterization of digestive amylase from the tasar silkworm, Antheraea mylitta (Lepidoptera: Saturniidae). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 110(1), 201-209. https://doi.org/10.1016/0305-0491(94)00121-A
Ozcan, M., Chalchat, J. C. (2004). Aroma profile of Thymus vulgaris L. growing wild in Turkey. Bulgarian Journal of Plant Physiology, 30, 68-73. http://www.bio21.bas.bg/ipp/gapbfiles/v-30/04_3-4_68-73.pdf
Prigent, S., Matoub, M., Rouland, C., & Cariou, M. L. (1998). Metabolic evolution in α-amylases from
Drosophila virilis and
D. repleta, two species with different ecological niches.
Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology,
119(2), 407-412.
https://doi.org/10.1016/S0305-0491(97)00367-2
Pirian K., Moein, S., Sohrabipour, J., Rabeie, R., & Piri, K. (2018). Evaluation of antioxidant and a-amylase inhibitory activity of two species Sargassum angustifolium and Palisada perforate. Cellular and Molecular Research, 13(2), 158-171. https://dorl.net/dor/20.1001.1.23832738.1397.31.2.4.2.
Rasouli, I., Rezaei, M. B., kamrani, A., & Zarpak, B. (2003) Comparison of Antibacterial Activities of Essential Oils of Thymus x-Porlock and Ampicillin In-vitro. Avicenna Journal of Clinical Medicine, 9 (4), 23-30. http://sjh.umsha.ac.ir/article-1-779-en.html.
Sarikurkcu, C., Zengin, G., Oskay, M., Uysal, S., Ceylan, R., & Aktumsek, A. (2015). Composition, antioxidant, antimicrobial and enzyme inhibition activities of two
Origanum vulgare subspecies (subsp. vulgare and subsp. hirtum) essential oils.
Industrial Crops and Products, 70, 178-184.
https://doi.org/10.1016/j.indcrop.2015.03.030
Shahbazy, S. (2012). Isolation and identification of essential oil compounds, sweat from Lavandula angustifolia. The Application of Chemistry in Environment, 3(12), 49-55. (in Farsi). https://sid.ir/paper/236310/en
Shen, X., Saburi, W., Gai, Z., Kato, K., Ojima-Kato, T., Yu, J., Komoda, K., Kido, Y., Matsui, H., Mori, H., & Yao, M. (2015). Structural analysis of the α-glucosidase HaG provides new insights into substrate specificity and catalytic mechanism.
Acta Crystallographica Section D: Biological Crystallography, 71, 1382-1391.
https://doi.org/10.1107/S139900471500721X
Shirai, T., Hung, V. S., Morinaka, K., Kobayashi, T., & Ito, S. (2008). Crystal structure of GH13 α-glucosidase GSJ from one of the deepest sea bacteria.
Proteins, 73, 126-133.
https://doi.org/10.1002/prot.22044
Siegentaler, U. (1977). Eine einfache und rasche methode zur bestimmung der alpha–glucosidase (saccharase) im honig. Mitteilung aus Gebiete Lebesmitelluntersuchung und Hygiene, 68, 251–258.
Tavakoli, M. M., Davari, B., Nasirian, H., Salehzadeh, A., Moradkhani, S., & Zahirnia, A. H. (2021). Investigation of insecticidal properties of Rosmarinus officinalis L. and
Lavandula angustifolia Mill. essential oils against German cockroach in laboratory.
Feyz,
25(3), 994-1002.
http://feyz.kaums.ac.ir/article-1-4254-en.html
Tohidi, B., Rahimmalek, M., Arzani, A. (2017). Essential oil composition, total phenolic and flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chemistry, 220, 153-161. http://dx.doi.org/10.1016/j.foodchem.2016.09.203.
Van de Laar, F. A., Lucassen, P. L., Akkermans, R. P., Van de Lisdonk, E. H., Rutten, G. E., & Van Weel, C. (2005). Alpha‐glucosidase inhibitors for type 2 diabetes mellitus.
Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD003639.pub2
Van der Maarel, M. J. E. C., Van der Veen, B., Uitdehaag, J. C. M., Leemhuis, H., & Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the α-amylase family.
Journal of biotechnology, 94, 137-155.
https://doi.org/10.1016/S0168-1656(01)00407-2.
Withers, S. G., & Aebersold, R. (1995). Approaches to labeling and identification of active site residues in glycosidases.
Protein Science, 4, 361-372.
https://doi.org/10.1002/pro.5560040302
Yilmazer-Musa, M., Griffith, A. M., Michels, A. J., Schneider, E., & Frei, B. (2012). Grape Seed and Tea Extracts and Catechin 3-Gallates Are Potent Inhibitors of α-Amylase and α-Glucosidase Activity. Journal of Agricultural and Food Chemistry, 60(36), 8924-8929. https://pubs.acs.org/doi/10.1021/jf301147n.
Zarezadeh, A., Mirhossaini, A., Mirza, M., & Arabzadeh, M. R. (2014) Extraction and qualitative and quantitative analysis of the essential oil of Thymus species cultivated in Yazd.
Iranian Journal of Medicinal and Aromatic Plants, 30(4),634-649.
https://doi.org/10.22092/ijmapr.2014.9845.
© 2024 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (
http://creativecommons.org/licenses/by-nc/4.0/.