Anderson, J.P., Sperschneider, J., Win, J., Kidd, B., Yoshida, K., Hane, J., Saunders, D.G., & Singh, K.B. (2017). Comparative secretome analysis of
Rhizoctonia solani isolates with different host ranges reveals unique secretomes and cell death inducing effectors.
Scientific reports,
7(1), p.10410.
https://doi.org/10.1038/s41598-017-10405-y
Bruns, R. (1999). Molekularbiologische und biochemische Untersuchungen zu pektinolytischen Enzymen, sowie zur Frage der Ploidie des phytopathogenen Pilzes Ascochyta rabiei (Doctoral dissertation, Verlag nicht ermittelbar).
Clarke, J. D. (2009). Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation.
Cold Spring Harbor Protocols, (3), pdb-prot5177.
https://doi.org/10.1101/pdb.prot5177
Fondevilla, S., Krezdorn, N., Rotter, B., Kahl, G., & Winter, P. (2015). In planta identification of putative pathogenicity factors from the chickpea pathogen
Ascochyta rabiei by de novo transcriptome sequencing using RNA-Seq and massive analysis of cDNA ends.
Frontiers in microbiology,
6, 1329.
https://doi.org/10.3389/fmicb.2015.01329
Ghozlan, M. H., Eman, E. A., Tokgöz, S., Lakshman, D. K., & Mitra, A. (2020). Plant defense against necrotrophic pathogens.
American Journal of Plant Sciences,
11(12), 2122-2138.
https://doi.org/10.4236/ajps.2020.1112149
Hamid, K., & Strange, R. N. (2000). Phytotoxicity of solanapyrones A and B produced by the chickpea pathogen
Ascochyta rabiei (Pass.) Labr. and the apparent metabolism of solanapyrone A by chickpea tissues.
Physiological and molecular plant pathology,
56(6), 235-244.
https://doi.org/10.1006/pmpp.2000.0272
Hasani, M., Shokouhifar, F., & Mamarabadi, M. (2023). Detection of the
gsh303 Gene Encoding a Candidate Protein with Effector Function during the Interaction between
Ascochyta rabiei and Chickpea.
Plant Protection (Scientific Journal of Agriculture),
46(2), 87-106.
https://doi.org/10.1007/s13313-023-00920-0
Höhl, B., Weidemann, C., Höhl, U., & Barz, W. (1991). Isolation of solanapyrones A, B and C from culture filture and spore germination fluids of
Ascochyta rabiei and aspects of phytotoxin action.
Journal of Phytopathology,
132(3), 193-206.
https://doi.org/10.1111/j.1439-0434.1991.tb00112.x
Jayakumar, P., Gan, Y. T., Gossen, B. D., Warkentin, T. D., & Banniza, S. (2005). Ascochyta blight of chickpea: infection and host resistance mechanisms.
Canadian Journal of Plant Pathology,
27(4), 499-509.
https://doi.org/10.1080/07060660509507251
Jukanti, A. K., Gaur, P. M., Gowda, C. L. L., & Chibbar, R. N. (2012). Nutritional quality and health benefits of chickpea (
Cicer arietinum L.): a review.
British Journal of Nutrition,
108(S1), S11-S26.
https://doi.org/10.1017/s0007114512000797
Kaiser, W. J. (1995). World distribution of Didymella rabiei, the teleomorph of Ascochyta rabiei, on chickpea. Phytopathology, 85(1040), 3275-3283.
Kanja, C., & HammondâKosack, K. E. (2020). Proteinaceous effector discovery and characterization in filamentous plant pathogens.
Molecular Plant Pathology, 21, 1353-1376.
https://doi.org/10.1111/mpp.12980
Kaur, S. (1995). Phytotoxicity of solanapyrones produced by the fungus
Ascochyta rabiei and their possible role in blight of chickpea (
Cicer arietinum).
Plant Science,
109(1), 23-29.
https://doi.org/10.1016/0168-9452(95)04144-j
Kim, W., Park, J.J., Dugan, F.M., Peever, T.L., Gang, D.R., Vandemark, G., & Chen, W. (2017). Production of the antibiotic secondary metabolite solanapyrone A by the fungal plant pathogen
Ascochyta rabiei during fruiting body formation in saprobic growth.
Environmental microbiology,
19(5), 1822-1835.
https://doi.org/10.1111/1462-2920.13673
Latif, Z., Strange, R., Bilton, J., & Riazuddin, S. (1993). Production of the phytotoxins, solanapyrones A and C and cytochalasin D among nine isolates of
Ascochyta rabiei.
Plant pathology,
42(2), 172-180.
https://doi.org/10.1111/j.1365-3059.1993.tb01488.x
Lee, S. J., & Rose, J. K. (2012). A yeast secretion trap assay for identification of secreted proteins from eukaryotic phytopathogens and their plant hosts.
Plant Fungal Pathogens: Methods and Protocols, 519-530.
https://doi.org/10.1007/978-1-61779-501-5_32
Li, S., Peng, X., Wang, Y., Hua, K., Xing, F., Zheng, Y., Liu, W., Sun, W., & Wei, S. (2019). The effector AGLIP1 in
Rhizoctonia solani AG1 IA triggers cell death in plants and promotes disease development through inhibiting PAMP-triggered immunity in
Arabidopsis thaliana.
Frontiers in Microbiology,
10, 2228.
https://doi.org/10.3389/fmicb.2019.02228
Lovelace, A. H., Dorhmi, S., Hulin, M. T., Li, Y., Mansfield, J. W., & Ma, W. (2023). Effector identification in plant pathogens.
Phytopathology®, 113, 637-650.
https://doi.org/10.1094/phyto-09-22-0337-kd
Maurya, R., Singh, Y., Sinha, M., Singh, K., Mishra, P., Singh, S.K., Verma, S., Prabha, K., Kumar, K., & Verma, P.K. (2020). Transcript profiling reveals potential regulators for oxidative stress response of a necrotrophic chickpea pathogen
Ascochyta rabiei.
3 Biotech,
10, 1-14.
https://doi.org/10.1007/s13205-020-2107-8
Qiu, C., Halterman, D., Zhang, H. & Liu, Z. (2024). Multifunctionality of AsCFEM6 and AsCFEM12 effectors from the potato early blight pathogen Alternaria solani. International
Shah, R.M., Williams, A.H., Hane, J.K., Lawrence, J.A., Farfan-Caceres, L.M., Debler, J.W., Oliver, R.P., & Lee, R.C. (2020). Reference genome assembly for Australian
Ascochyta rabiei isolate ArME14. G3:
Genes, Genomes, Genetics,
10(7), 2131-2140.
https://doi.org/10.1534/g3.120.401265
Sharma, N., Rahman, M. H., Strelkov, S., Thiagarajah, M., Bansal, V. K., & Kav, N. N. (2007). Proteome-level changes in two
Brassica napus lines exhibiting differential responses to the fungal pathogen
Alternaria brassicae.
Plant Science,
172(1), 95-110.
https://doi.org/10.1016/j.plantsci.2006.07.016
Shokouhifar, F., Bagheri, A., & Falahati-Rastegar, M. (2006). Identification of resistant chickpea lines against pathotypes causing Ascochyta blight disease in Iran. Iranian Journal of Biology 19, 29-42.
Shokouhifar, F., Bagheri, A. Falahati-Rastegar, M., & Malekzadeh-Shafaroodi, S. (2003). Pathotyping of Ascochyta rabiei isolates in Iran. Jornal of Agricultural Sciences and Natural Resources 37, 217-232.
Singh, K., Nizam, S., Sinha, M., & Verma, P. K. (2012). Comparative transcriptome analysis of the necrotrophic fungus
Ascochyta rabiei during oxidative stress: insight for fungal survival in the host plant.
PloS one,
7(3), e33128.
https://doi.org/10.1371/journal.pone.0033128
Singh, S.K., Shree, A., Verma, S., Singh, K., Kumar, K., Srivastava, V., Singh, R., Saxena, S., Singh, A.P., Pandey, A., & Verma, P.K. (2023). The nuclear effector ArPEC25 from the necrotrophic fungus
Ascochyta rabiei targets the chickpea transcription factor CaβLIM1a and negatively modulates lignin biosynthesis, increasing host susceptibility.
The Plant Cell,
35(3), 1134-1159.
https://doi.org/10.1093/plcell/koac372
Spoel, S. H., Johnson, J. S., & Dong, X. (2007). Regulation of tradeoffs between plant defenses against pathogens with different lifestyles.
Proceedings of the National Academy of Sciences,
104(47), 18842-18847.
https://doi.org/10.1073/pnas.0708139104
Tenhaken, R., Arnemann, M., Köhler, G., & Barz, W. (1997). Characterization and cloning of cutinase from
Ascochyta rabiei.
Zeitschrift Für Naturforschung C,
52(3-4), 197-208.
https://doi.org/10.1515/znc-1997-3-411
Tenhaken, R., & Barz, W. (1991). Characterization of pectic enzymes from the chickpea pathogen
Ascochyta rabiei.
Zeitschrift für Naturforschung C,
46(1-2), 51-57.
https://doi.org/10.1515/znc-1991-1-209
Verma, S., Gazara, R. K., Nizam, S., Parween, S., Chattopadhyay, D., & Verma, P. K. (2016). Draft genome sequencing and secretome analysis of fungal phytopathogen
Ascochyta rabiei provides insight into the necrotrophic effector repertoire.
Scientific Reports,
6(1), 24638.
https://doi.org/10.1038/srep24638
Wei, M., Wang, A., Liu, Y., Ma, L., Niu, X., & Zheng, A. (2020). Identification of the novel effector RsIA_NP8 in
Rhizoctonia solani AG1 IA that induces cell death and triggers defense responses in non-host plants.
Frontiers in Microbiology,
11, 1115.
https://doi.org/10.3389/fmicb.2020.01115
Zheng, A., Lin, R., Zhang, D., Qin, P., Xu, L., Ai, P., Ding, L., Wang, Y., Chen, Y., Liu, Y., & Sun, Z. (2013). The evolution and pathogenic mechanisms of the rice sheath blight pathogen.
Nature communications,
4(1), 1424.
https://doi.org/10.1038/ncomms2427
© 2024 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (
http://creativecommons.org/licenses/by-nc/4.0/.