بررسی تأثیر اندوفیتی دو گونه Beauveria بر صفات رشدی و برخی فعالیت‎های بیوشیمیایی لوبیا (Phaseolus vulgaris)

نوع مقاله : علمی پژوهشی-فارسی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه لرستان، خرم‌آباد، ایران

2 استاد، گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه لرستان، خرم‌آباد، ایران

3 دانشیار، گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه لرستان، خرم‌آباد، ایران

4 دانش‌آموخته دکتری بیماری‌شناسی گیاهی، گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه لرستان، خرم‌آباد، ایران

چکیده

لوبیا عمده‎ترین محصول حبوبات است که سهم 85 درصدی در تولید جهانی را دارد. دغدغه اصلی جامعه علمی ارائه راهبردهایی برای تضمین امنیت غذایی، ایمنی محصولات و برنامه‎های کاربردی برای کاهش آفت‎‎کش‎ها و کودهای شیمیایی است. در میان جایگزین‌های مورد بررسی، استفاده از میکروارگانیسم‌های مفید یکی از ارکان اصلی برای ایجاد چرخش سبز در سامانه‎های کشاورزی است. هدف از این مطالعه، بررسی نقش اندوفیتی دو گونۀ بومی Beauveria bassiana و B. pseudobassiana و تأثیر آن‎ها بر صفات رشدی از جمله ارتفاع بوته و طول ریشه، همچنین برخی از خصوصیات بیوشیمیایی لوبیا از جمله فنل، پرولین، پلی‎فنل‎اکسیداز، به‎علاوه کلروفیل و کاروتنوئید بود. بدین منظور از کشت 10 روزه گونه‎های قارچی سوسپانسیون اسپور تهیه شد. سوسپانسیون حین کاشت بذر به خاک اضافه شد. بیست و پنج روز پس از مایه‎زنی، نمونه‎برداری جهت تعیین استقرار قارچ در گیاه و اندازه‎گیری صفات رشدی و فعالیت‎های بیوشیمیایی صورت گرفت. نتایج نشان داد گونه‎های قارچی به صورت اندوفیت در بخش‎های مختلف لوبیا استقرار یافتند. همچنین کاربرد گونه‎های قارچی به تنهایی و ترکیبی صفات رشدی و فعالیت‎های بیوشیمیایی را در مقایسه با شاهد افزایش دادند. بیشترین تاثیر مربوط به ترکیب دو گونه بود که باعث افزایش 6/72 درصدی وزن خشک اندام هوایی شد. همچنین این تیمار وزن خشک و طول ریشه را به ترتیب 8/55 و 7/32 درصد افزایش داد. نتایج فعالیت‎های بیوشیمیایی نشان داد که تیمار هر دو گونه به تنهایی و ترکیب آن‎ها میزان فعالیت‎های بیوشیمیایی را در مقایسه با شاهد افزایش دادند. نتایج این مطالعه می‎تواند نشان دهنده‎ی توانایی جدایه‎های Beauveria به ‌عنوان محرک رشد می‎باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating effect of the endophytic of two Beauveria species on growth traits and some biochemical activities of bean (Phaseolus vulgaris)

نویسندگان [English]

  • P. Karooei 1
  • M. Darvishnia 2
  • E. Bazgir 3
  • Z. Mirzaeipour 4
1 M.Sc. student, Department of Plant Protection, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
2 Professor, Department of Plant Protection, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
3 Associate Professor, Department of Plant Protection, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
4 Ph.D. Graduate of Plant Pathology, Department of Plant Protection, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
چکیده [English]

Background and objectives
Legumes are widely regarded as one of the most significant protein sources in human and animal food chains. The common bean is the primary legume crop, accounting for 85% of global bean production. The scientific community's primary priority is to develop innovative techniques to assure food security in addition to agricultural product safety, while simultaneously implementing realistic plans to reduce the usage of pesticides and artificial fertilizers. Among the investigated solutions, the utilization of beneficial microbes is one of the key components in establishing a green rotation in agricultural systems across the world. This study aimed to evaluate the endophytic role of native Beauveria species on the development and biochemical characteristics of common beans.
Materials and methods
Spore suspension (1 × 108 ml-1) was produced after a 10-day culture of the species. The spore suspension was introduced to the soil after the seeds had been disinfected during planting. To assess the fungus's establishment in the plants, samples were collected up to 25 days following inoculation. The experiment was conducted in a completely randomized design with three replications for each treatment, and parameters such as dry and fresh root and shoot weight, plant height, root length, chlorophyll a, chlorophyll b, total chlorophyll, carotenoid, phenol, proline, and polyphenol oxidase enzyme were determined. SAS software was used to analyze the data, and Duncan's multiple range test was used to compare means at a P-value of <0.05.
Results
Beauveria species injected with 1 × 108 ml-1 spores per milliliter were re-isolated by cultured bean root, stem, and leaf tissues in PDA culture media, confirming endophytic fungi. These two Beauveria species were capable of establishing systematic colonization in tissues from all bean organs. The study found that employing B. pseudobassiana and B. bassiana, as well as integrating these two species, raised bean plant height by 37.7, 20.2, and 41.4%, respectively, compared to the control treatment. Similarly, applying these treatments increased root length by 15.5, 24.5, and 32.7%, respectively, compared to the control treatment. According to the findings of this study, B. pseudobassiana, B. bassiana, and the mixture of these two fungal species increased the dry weight of the aerial sections of beans by 50.6, 36.9, and 72.6 percent, respectively. Furthermore, the use of B. bassiana, B. pseudobassiana, or a mixture of these two species elevated root dry weight by 44.1%, 39.5%, and 55.8%, respectively, in comparison with the control treatment. In general, all treatments produced more chlorophyll a, chlorophyll b, and total chlorophyll than the control treatment. The combination of two species resulted in the maximum number of features, which were 153.9%, 162.8%, and 156.9%, respectively, in comparison with the control treatment. The results indicated that the amount of Carotenoid, polyphenol oxidase enzyme, phenol, and proline rose considerably when two fungal species were used alone or in combination, compared to the control treatment.
Discussion
Endophytic B. pseudobassiana has been the subject of no prior research, based on our findings. The fungal strains used in the current study were re-isolated from the roots and other parts of the plant, indicating that the inoculated strains colonized the studied bean plants systematically. Entomopathogenic fungi have recently attracted the attention of researchers for the profits they provide to their hosts, particularly in plant growth. The findings revealed that employing endophytic fungi and interacting with them might enhance the morpho-physiological properties of bean plants. As a result, we discovered that entomopathogenic fungi might act as both endophytic and plant growth boosters. In spite of the current proceedings, more study is required to investigate the endophytic nature of these native species in other hosts, their effect on pathogen and insect control, and their effect on metabolites, hormones, and micro-nutrients using various inoculation methods.

کلیدواژه‌ها [English]

  • Entomopathogenic fungi
  • Beauveria
  • Endophyte
  • Growth parameters
References
Afandhi, A., Widjayanti, T., Emi, A.A.L., Tarno, H., Afiyanti, M., & Handoko, R.N.S. (2019). Endophytic fungi Beauveria bassiana Balsamo accelerates growth of common bean (Phaeseolus vulgaris L.). Chemical and Biological Technologies in Agriculture, 6(1), 1-6. https://doi.org/10.1186/s40538-019-0148-1.
Aghaei Dargiri, S., Samsampour, D., Askari Seyahooei, M., & Bagheri, A. (2021). Evaluation of the effect of fungal Penicillium chrysogenum and bacterial Exigubacteium aurantiacum endophytes on improvement of the morpho-physiological characteristics of tomato seedlings. Plant Process and Function, 10(42), 251-266. http://jispp.iut.ac.ir/article-1-1465-fa.html. (In Farsi with English summary).
Akello, J., Dubois, T., Coyne, D., Kyamanywa, S. (2008). Endophytic Beauveria bassiana in banana (Musa spp.) reduces banana weevil (Cosmopolites sordidus) fitness and damage. Crop Protection, 27(11), 1437–1441. https://doi.org/10.1016/j.cropro.2008.07.003.
Akello, J., Dubois, T., Gold, C. S., Coyne, D., Nakavuma, J., & Paparu, P. (2007). Beauveria bassiana (Balsamo) Vuillemin as an endophyte in tissue culture banana (Musa spp.). Journal of Invertebrate Pathology, 96(1), 34-42. https://doi.org/10.1016/j.jip.2007.02.004 .
Amal, H.A., Debbab, A. & Proksch, P. (2011). Fungal endophytes: unique plant inhabitants with great promises. Applied Microbiology and Biotechnology, 90, 1820−1845. https://doi.org/10.1007/s00253-011-3270-y.
Amanpour-Balaneji, B., & Sedghi, M. (2012). Effect of aging and priming on physiological and biochemical traits of common bean (Phaseolus vulgaris L.). Notulae Scientia Biologicae, 4(2), 95-100. https://doi.org/10.15835/nsb427358 . (In Farsi with English summary).
Bagheri, A.A., Saadatmand, S., Niknam, V., Nejadsatari, T., & Babaeizad, V. (2013). Effect of endophytic fungus, Piriformospora indica, on growth and activity of antioxidant enzymes of rice (Oryza sativa L.) under salinity stress. International Journal of Advanced Biological and Biomedical Research, 1(11), 1337-1350. http://ijabbr.com/upload/IJABBR-2013-1118. (In Farsi with English summary).
Bamisile, B.S., Dash, C.K., Akutse, K.S., Keppanan, R., Wang, L. (2018). Fungal endophytes: Beyond herbivore management. Frontiers Microbiology, 9, 1–11. https://doi.org/10.3389/fmicb.2018.00544.
Bano, A., & Muqarab, R. (2017). Plant defense induced by PGPR against Spodoptera litura in tomato (Solanum lycopersicum L.). Plant Biology, 19(13), 406–412. https://doi.org/10.1111/plb.12535
Baron, N.C., & Rigobelo, E.C. (2022). Endophytic fungi: a tool for plant growth promotion and sustainable agriculture. Mycology, 13(1), 39-55. https://doi.org/10.1080/21501203.2021.1945699.
Bates, L.S., Waldron, R.P., & Teare, I.D. (1973). ʺRapid determination of free proline for water stress studiesʺ, Plant Soil, 39, 205–217. http://dx.doi.org/10.1007/BF00018060.
Batool, R., Umer, M.J., Wang, Y., He, K., Zhang, T., Bai, S., Zhi, Y., Chen, J., & Wang, Z. (2020). Synergistic effect of Beauveria bassiana and Trichoderma asperellum to induce maize (Zea mays L.) defense against the Asian corn borer, Ostrinia furnacalis (Lepidoptera, Crambidae) and larval immune response. International journal of molecular sciences, 21(21), p.8215. https://doi.org/10.3390/ijms21218215.
Behie, S. W., Jones, S. J., & Bidochka, M. J. (2015). Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecology, 13, 112-119. https://doi.org/10.1016/j.funeco.2014.08.001.
Bhattacharya, A., Sood, P., & Citovsky, V. (2010). The roles of plant phenolics in defense and communication during. Molecular plant pathology, 11(5). 705-719. https://doi.org/10.1111/J.1364-3703.2010.00625.X.
Blumenstein, K. (2010). Characterization of endophytic fungi in the genus Ulmus: putativeagents for the biocontrol of Dutch elm disease (DED). Diploma’s Thesis). University of Kassel.
Bu, N., Li, X., Li, Y., Ma, C., Ma, L., & Zhang, C. (2012). Effects of Na2CO3 stress on photosynthesis and antioxidative enzymes in endophyte infected and non-infected rice. Ecotoxicology and Environmental Safety, 78: 35-40. https://doi.org/10.1016/j.ecoenv.2011.11.007 .
Bujor, O.C., Talmaciu, I.A., Volf, I., & Popa, V.I. (2015). Biorefining to recover aromatic compounds with biological properties. TAPPI Journal, 14(3): 187-193. https://doi.org/10.32964/TJ14.3.187.
Canassa, F., Tall, S., Moral, R.A., de Lara, I.A., Delalibera Jr, I., & Meyling, N.V. (2019). Effects of bean seed treatment by the entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana on plant growth, spider mite populations and behavior of predatory mites. Biological Control, 132(10), pp.199-208. https://doi.org/10.1016/j.biocontrol.2019.02.003.
Chanclud, E., & Morel, J.B. (2016). Plant hormones: a fungal point of view. Molecular and Plant Pathology, 17(8), pp.1289–1297. https://doi.org/10.1111/mpp.12393
Chekanai, V., Chikowo, R., & Vanlauwe, B. (2018). Response of common bean (Phaseolus vulgaris L.) to nitrogen, phosphorus and rhizobia inoculation across variable soils in Zimbabwe. Agriculture, ecosystems & environment, 266, pp.167-173. https://doi.org/10.1016/j.agee.2018.08.010.
Chen, Y., Mao, W., Tao, H., Zhu, W., Qi, X., Chen, Y., ... & Li, N. (2011). Structural characterization and antioxidant properties of an exopolysaccharide produced by the mangrove endophytic fungus Aspergillus sp. Y16. Bioresource Technology, 102(17), 8179-8184. https://doi.org/10.1016/j.biortech.2011.06.048.
Chowdhary, K., & Sharma, S. (2020). Plant growth promotion and biocontrol potential of fungal endophytes in the inflorescence of Aloe vera L.. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 90(5), 1045–1055. https://doi.org/10.1007/s40011-020-01173-3.
Contreras-Cornejo, H.A., Macías-Rodríguez, L., Cortés-Penagos., C. & López-Bucio, J. (2009). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant physiology, 149(3), pp.1579-1592. https://doi.org/10.1104/pp.108.130369.
Dara, S.K., Peck, D., & Farms, M.B. (2016). Impact of Entomopathogenic Fungi and Beneficial Microbes on Strawberry Growth, Health, and Yield. Available online: https://ucanr.edu/blogs/strawberries-vegetables/index. cfm?start=17 (accessed on 21 November 2018).
Darkwa, K., Ambachew, D., Mohammed, H., Asfaw, A., & Blair, M.W. (2016). Evaluation of common bean (Phaseolus vulgaris L.) genotypes for drought stress adaptation in Ethiopia. The crop journal, 4(5), pp.367-376. https://doi.org/10.1016/j.cj.2016.06.007.
Dash, C.K., Bamisile, B.S., Keppanan, R., Qasim, M., Lin, Y., Islam, S.U., Hussain, M., & Wang, L. (2018). Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L. (Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari: Tetranychidae). Microbial Pathogenesis, 125, 385–392. https://doi: 10.1016/j.micpath.2018.09.044.
Dildey, O.D.F., Broetto, L., Rissato, B.B., Coltro-Roncato, S., Dalâ, E.G., Meinerz, C.C., Henkemeier, N.P., Stangarlin, J.R., Kuhn, O.J., & Webler, T.F.B. (2016). Trichoderma-bean interaction: defense enzymes activity and endophytism. African Journal of Agricultural Research, 11(43), 4286-4292. https://doi.org/10.5897/AJAR2016.11687.
Eleiwa, M.E., Hamed, E.R., & Shehata, H.S. (2012) The role of biofertilizers and/or some micronutrients on wheat plant (Triticum aestivum L.) growth in newly reclaimed soil. Journal of Medicinal Plants Research, 6, 3359-3369.
Elena, G.J., Beatriz, P.J., Alejandro, P., & Lecuona, R. (2011). Metarhizium anisopliae (Metschnikoff) Sorokin promotes growth and has endophytic activity in tomato plants. Advances in Biological Research, 5(1), pp.22–27. https://api.semanticscholar.org/CorpusID:86199236.
El-Khallal, S.M. (2007). Induction and modulation of resistance in tomato plants against Fusarium wilt disease by bioagent fungi (arbuscular mycorrhiza) and/or hormonal elicitors (jasmonic acid & salicylic acid): 1-Changes in growth, some metabolic activities and endogenous hormones related to defence mechanism. Australian Journal of Basic and Applied Sciences, 14(1), 691–705.
FAO. 2022. Crops and livestock products. [Available online at https://www.fao.org/faostat/en/#data/QCL].
Fatahuddin, A.N., Daud, I.D., & Chandra, Y. (2003). Uji kemampuan Beauveria bassiana Vuillemin (Hyphomycetes: Moniliales) sebagai endofit pada tanaman kubis dan penyaruh terhadap larva Plutella Xylostella L. (Lepidoptera: Yponomeutidae). Fitomrdik Journal Fitomedika, 5(1), 16-9.
Garcia, J.E., Posadas, J.B., Perticari, A., & Lecuona, R.E. (2011). Metarhizium anisopliae (Metschnikoff) Sorokin promotes growth and has endophytic activity in tomato plants. Advances in Biological Research, 5(1), 22–27.
García-Latorre, C., Rodrigo, S., Marin-Felix, Y., Stadler, M., & Santamaria, O. (2023). Plant-growth promoting activity of three fungal endophytes isolated from plants living in dehesas and their effect on Lolium multiflorum. Scientific Reports, 13(1), p.7354. https://doi.org/10.1038/s41598-023-34036-8.
Gautam, S., Mohankumar, S., & Kennedy, J.S. (2016). Induced host plant resistance in cauliflower by Beauveria bassiana. Journal of Entomology and Zoology Studies, 4(2), 476-482.
Greenfield, M., Gómez-Jiménez, M.I., Ortiz, V., Vega, F.E., Kramer, M., & Parsa, S. (2016). Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. Biological Control, 95, pp.40-48. https://doi.org/10.1016/j.biocontrol.2016.01.002.
Gupta, S., Chaturvedi, P., Kulkarni, M.G., & Van Staden, J. (2020). A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnology Advances, 39, 107462. https://doi.org/10.1016/j.biotechadv.2019.107462.
Han, D., Wang, K., Long, F., Zhang, W., Yao, X., & Chen, S. (2022). Effects of endophytic fungi on the secondary metabolites of Hordeum bogdanii under alkaline stress. AMB Express, 12(73). https://doi.org/10.1186/s13568-022-01414-w.
Hashem, A., Abd-Allah, E. F., Alqarawi, A., Al-Huqail, A. A., Wirth, S., & Egamberdieva, D. (2016) The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Frontiers in microbiology, 7, 1089. https://doi.org/10.3389/fmicb.2016.01089 .
Helander, M., Ahlholm, J., Sieber, T. N., Hinneri, S., & Saikkonen, K. (2007). Fragmented environment affects birch leaf endophytes. New Phytologist, 175(3), 547-553. DOI: https://doi.org/10.1111/j.1469-8137.2007.02110.x .
Jaber, L.R., & Enkerli, J. (2017). Fungal entomopathogens as endophytes: can they promote plant growth? Biocontrol Science and Technology, 27(1), 28-41. https://doi.org/10.1080/09583157.2016.1243227.
Jaber, L.R., & Ownley, B.H. (2018). Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biological control, 116, pp.36-45. https://doi.org/10.1016/j.biocontrol.2017.01.018.
Joshi, P.K., & Rao, P.P. (2017). Global pulses scenario: status and outlook. Annals of the New York Academy of Sciences, 1392(1), 6-17. https://doi.org/10.1111/nyas.13298.
Kaewchai, S., Soytong, K., & Hyde, K.D. (2009). Mycofungicides and fungal biofertilizers. Fungal Diversity, 38, 25- 50.
Kar, M., & Mishra, D. (1976). "Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant physiology, 57(2), 315-319. https://doi.org/10.1104/pp.57.2.315
Kawalekar, J.S. (2013). Role of biofertilizers and biopesticides for sustainable agriculture. Journal of Bio Innovation, 2(3), 73-78.
Khaledi, N., & Taheri, P. (2016). Biocontrol mechanisms of Trichoderma harzianum against soybean charcoal rot caused by Macrophomina phaseolina. Journal of Plant Protection Research, 56 (1): 21–31. https://doi.org/10.1515/jppr-2016-0004.
Khan, A. L., Hamayun, M., Kim, Y. H., Kang, S. M., Lee, J. H., & Lee, I. J. (2011). Gibberellins producing endophytic Aspergillus fumigatus sp LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochemistry, 46(2), 440–447. https://doi.org/10.1016/j.procbio.2010.09.013.
Kubicek, C.P., Herrera-Estrella, A., Seidl-Seiboth, V. et al. (2011). Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma, Genome Biology, 12(4), 1–15. https://doi.org/10.1186/gb-2011-12-4-r40.
Kumar, S., Thakur, M., & Rani, A. (2014). Trichoderma: Mass production, formulation, quality control, delivery and its scope in commercialization in India for the management of plant diseases. African Journal of Agricultural Research, 9(53), 3838-3852. https://doi.org/10.5897/AJAR2014. 9061.
Kumar, S., Abedin, M. M., Singh, A. K., & Das, S. (2020). Role of phenolic compounds in plant-defensive mechanisms. Plant phenolics in sustainable agriculture, 1, 517-532. DOI:10.1007/978-981-15-4890-1_22.
Landa, B.B., Lopez, D.C., Jimenez, F.D., Montes, B.M., Munoz, L.F.J., Ortiz, U.A., & Quesada, M.E. (2013). In plant a detection and monitorization of endophytic colonization by a Beauveria bassiana strain using a new-developed nested and quantitative PCR-based assay and confocal laser scanning microscopy. Journal Invertebr Pathology, 114(2), 128–38. https://doi.org/10.1016/j.jip.2013.06.007.
Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. Current protocols in food analytical chemistry, 1(1), F4-3. https://doi.org/10.1002/0471142913.faf0403s01.
Liu, Y., Yang, Y., & Wang, B. (2022). Entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae play roles of maize (Zea mays) growth promoter, Scientific Reports, 12(1), 15706. https://doi.org/ 10.1038/s41598-022-19899-7.
Lopez, D. C., & Sword, G. A. (2015). The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biological Control, 89, 53–60. http://dx.doi.org/10.1016/j.biocontrol.2015.03.010.
Lubna, Asaf, S., Hamayun, M., Gul, H., Lee, I. J., & Hussain, A. (2018). Aspergillus niger CSR3 regulates plant endogenous hormones and secondary metabolites by producing gibberellins and indoleacetic acid. Journal of Plant Interactions, 13(1), 100-111. https://doi.org/10.1080/17429145.2018.1436199.
Mac-Adam, J.W., Nelson, C.J., & Sharp, R.E. (1992). Peroxidase Activity in the leaf elongation zone of tall fescue. Plant Physiology, 99, 872– 878. https://doi.org/10.1104/pp.99.3.872.
Macuphe, N., Oguntibeju, O.O., & Nchu, F. (2021). Evaluating the endophytic activities of Beauveria bassiana on the physiology, growth, and antioxidant activities of extracts of lettuce (Lactuca sativa L.). Plants, 10(6), p.1178. https://doi.org/10.3390/plants10061178.
Mahmoud, G.A.E., Abdel-Sater, M.A., Al-Amery, E., & Hussein, N.A. (2021). Controlling Alternaria cerealis MT808477 tomato Phytopathogen by Trichoderma harzianum and tracking the plant physiological changes. Plants, 10(9), 1846. https://doi.org/10.3390/plants10091846.
Mantzoukas, S., Lagogiannis, I., Mpousia, D., Ntoukas, A., Karmakolia, K., Eliopoulos, P.A., & Poulas, K. (2021). Beauveria bassiana endophytic strain as plant growth promoter: The case of the grape vine Vitis vinifera. Journal of Fungi, 7(2), p.142. https://doi.org/10.3390/jof7020142.
Mirzaeipour, Z., Bazgir, E., Zafari, D., & Darvishnia, M. (2023). Selection and biocontrol efficiency of Trichoderma isolates against Rhizoctonia root rot and their growth promotion effects on strawberry plants. Journal of Plant Pathology, 105(4), 1563-1579. https://doi.org/10.1007/s42161-023-01488-w.
Moloinyane, S., & Nchu, F. (2019). The effects of endophytic Beauveria bassiana inoculation on infestation level of Planococcus ficus, growth and volatile constituents of potted greenhouse grapevine (Vitis vinifera L.). Toxins, 11(2), p.72. https://doi.org/10.3390/toxins11020072
Munns, R., & Tester., M. (2008). Mechanisms of salinity tolerance. Annul Review Plant Biology, 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911 .
Naveed, S., & Qamar, F. (2014). A simple assay of esomeprazole using UV spectrophotometer. The Global Journal of Pharmaceutical Research, 3, 1921-25.
Obala, J., Mukankusi, C., Rubaihayo, P. R., Gibson, P., & Edema, R. (2012). Improvement of resistance to Fusarium root rot through gene pyramiding in common bean. African Crop Science Journal, 20(1).https://hdl.handle.net/10568/96296.
Omomowo, O. I., & Babalola, O. O. (2019). Bacterial and fungal endophytes: tiny giants with immense beneficial potential for plant growth and sustainable agricultural productivity. Microorganisms, 7(11), 481. doi: 10.3390/microorganisms7110481
Parsa, S., Ortiz, V., & Vega, F.E. (2013). Establishing fungal entomopathogens as endophytes: towards endophytic biological control. JoVE (Journal of Visualized Experiments), 11(74), p.e50360. https ://doi.org/10.3791/50360.
Pourhadian, H., Hadavand, N., Khalili, M., & Kazem Aslani, H. (2022). Evaluation of growth indices, yield, and yield components of red bean cultivars in cold climatic conditions. Plant Production and Genetics, 3(1), 133-146. doi: 10.34785/J020.2022.120.
Prathyusha, P., Rajitha Sri, A. B., Ashokvardhan, T., & Satya Prasad, K. (2015). Antimicrobial and siderophore activity of the endophytic fungus Acremonium sclerotigenum inhabiting Terminalia bellerica Roxb. International Journal of Pharmaceutical Sciences Review and Research, 30(1), 84-87.
Rai, M., Rathod, D., Agarkar, G., Dar, M., Brestic, M., Pastore, G.M., & Junior, M.R.M. (2014). Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture. Symbiosis, 62, pp.63-79. http://dx.doi.org/10.1007/s13199-014-0273-3.
Rodriguez, R.J., White, J.F., Arnold, A.E., Jr., & Redman, R.S. (2009). Fungal endophytes: Diversity and functional roles. New Phytologist, 182, 314–330. https://doi.org/10.1111/j.1469-8137.2009.02773.x.
Rozpa˛dek, P., We˛z˙owicz, K., Nosek, M., Waz˙ny, R., Tokarz, K., Lembicz, M., Miszalski, Z., & Turnau, K. (2015). The fungal endophyte Epichloë typhina improves photosynthesis efficiency of its host orchard grass (Dactylis glomerata). Planta, 242(4), 1025–1035. https://doi.org/10.1007/s00425-015-2337-x. Epub 2015 Jun 10.
Saikkonen, K., Saari, S., & Helander, M. (2010). Defensive mutualism between plants and endophytic fungi? Fungal Divers, 41, 101–113. https://doi.org/10.1007/s13225-010-0023-7.
Salimi, T., Alymanesh, M. R., Fazeli, A., & Bagnazari, M. (2023). The effect of endophytic bacterium Enterobacter sp. isolated from basil on growth stimulation and control of tomato seedling bacterial canker disease. Plant Protection (Scientific Journal of Agriculture), 46(1), 39-55. doi: 10.22055/ppr.2023.42716.1672.
Sánchez-Rodríguez, A. R., Raya-Díaz, S., Zamarreño, Á. M., García-Mina, J. M., Campillo, M. D., & Quesada-Moraga, E. (2018). An endophytic Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworm (Spodoptera littoralis) larvae. Biological Control, 116, 90–102. https://doi.org/10.1016/j.biocontrol.2017.01.012.
Singh, D.P., Singh, V., Gupta, V.K., Shukla, R., Prabha, R., Sarma, B.K., & Patel, J.S. (2020). Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress. Science. Reports, 10(1), 1-17. https://doi.org/10.1038/s41598-020-61140-w.
Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158. http://www.ajevonline.org/content/16/3/144.full.pdf+html.
Sinno, M., Ranesi, M., Di Lelio, I., Iacomino, G., Becchimanzi, A., Barra, E., Molisso, D., Pennacchio, F., Digilio, M.C., Vitale, S., & Turrà, D. (2021). Selection of endophytic Beauveria bassiana as a dual biocontrol agent of tomato pathogens and pests. Pathogens, 10(10), p.1242. https://doi.org/10.3390/pathogens10101242.
Solhjouy-Fard, S., Talaei-Hassanloui, R., Maali-Amiri, R., & A. Sword, G. (2023). Effect of endophytic Beauveria bassiana on growth traits of five rapeseed varieties Brassica napus. Journal of Applied Research in Plant Protection, 12(1), 87-94. https://doi.org/10.22034/arpp.2022.15637.
Sui, L., Lu, Y., Zhou, L., Li, N., Li, Q., & Zhang, Z. (2023). Endophytic Beauveria bassiana promotes plant biomass growth and suppresses pathogen damage by directional recruitment. Frontiers in Microbiology, 14, p.1227269. https://doi.org/10.3389/fmicb.2023.1227269 .
Tall, S., & Meyling, N. V. (2018). Probiotics for plants? Growth promotion by the entomopathogenic fungus Beauveria bassiana depends on nutrient availability. Microbial ecology, 76(4), 1002-1008. doi: 10.1007/s00248-018-1180-6.
Tandon, A., Fatima, T., Shukla, D., Tripathi, P., Srivastava, S., & Singh, P. C. (2020). Phosphate solubilization by Trichoderma koningiopsis (NBRI-PR5) under abiotic stress conditions. Journal of King Saud University-Science, 32(1), 791-798. https://doi.org/10.1016/j.jksus.2019.02.001.
Vincent, D., Rafiqi, M., & Job, D. (2020). The multiple facets of plant–fungal interactions revealed through plant and fungal secretomics. Frontiers in Plant Science, 10, 1626. https://doi.org/10.3389/fpls.2019.01626 .
Vermerris, W., Nicholson, R., Vermerris, W., & Nicholson, R. (2006). The role of phenols in plant defense. Phenolic compound biochemistry, 211-234. https://doi.org/10.1007/978-1-4020-5164-7_6
Yang, B., Wang, X. M., Ma, H. Y., Yang, T., Jia, Y., Zhou, J., & Dai, C. C. (2015). Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere. Frontiers in microbiology, 6, 982. https://doi.org/10.3389/fmicb.2015.00982 .
Zaidi, N. W., Dar, M. H., & Singh S, U. S. (2014). Trichoderma species as abiotic stress relievers in plants. In Gupta, V.G., Schmoll, M., Herrea-Estrella, A.,Upadhyay, R. S., Druzhinina, I. and Tuohy, M. (Eds.), Biotachnology and Bilogy of Trichoderma (Pp. 515-523). Elsevier, Walthm, MA 02451, USA. https://doi.org/10.1016/B978-0-444-59576-8.00038-2.
Zhang, H.M. (2008.) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant Journal, 56(2),264–273. https://doi.org/10.1111/j.1365-313X.2008.03593.x. Epub 2008 Jun 28.
 © 2024 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/.