References
Afandhi, A., Widjayanti, T., Emi, A.A.L., Tarno, H., Afiyanti, M., & Handoko, R.N.S. (2019). Endophytic fungi
Beauveria bassiana Balsamo accelerates growth of common bean (
Phaeseolus vulgaris L.).
Chemical and Biological Technologies in Agriculture,
6(1), 1-6.
https://doi.org/10.1186/s40538-019-0148-1.
Aghaei Dargiri, S., Samsampour, D., Askari Seyahooei, M., & Bagheri, A. (2021). Evaluation of the effect of fungal
Penicillium chrysogenum and bacterial
Exigubacteium aurantiacum endophytes on improvement of the morpho-physiological characteristics of tomato seedlings.
Plant Process and Function, 10(42), 251-266.
http://jispp.iut.ac.ir/article-1-1465-fa.html. (In Farsi with English summary).
Akello, J., Dubois, T., Coyne, D., Kyamanywa, S. (2008). Endophytic
Beauveria bassiana in banana (
Musa spp.) reduces banana weevil (
Cosmopolites sordidus) fitness and damage.
Crop Protection,
27(11), 1437–1441.
https://doi.org/10.1016/j.cropro.2008.07.003.
Akello, J., Dubois, T., Gold, C. S., Coyne, D., Nakavuma, J., & Paparu, P. (2007).
Beauveria bassiana (Balsamo) Vuillemin as an endophyte in tissue culture banana (
Musa spp.).
Journal of Invertebrate Pathology,
96(1), 34-42. https://doi.org/
10.1016/j.jip.2007.02.004 .
Amal, H.A., Debbab, A. & Proksch, P. (2011). Fungal endophytes: unique plant inhabitants with great promises.
Applied Microbiology and Biotechnology,
90, 1820−1845.
https://doi.org/10.1007/s00253-011-3270-y.
Amanpour-Balaneji, B., & Sedghi, M. (2012). Effect of aging and priming on physiological and biochemical traits of common bean (
Phaseolus vulgaris L.).
Notulae Scientia Biologicae,
4(2), 95-100.
https://doi.org/10.15835/nsb427358 . (In Farsi with English summary).
Bagheri, A.A., Saadatmand, S., Niknam, V., Nejadsatari, T., & Babaeizad, V. (2013). Effect of endophytic fungus,
Piriformospora indica, on growth and activity of antioxidant enzymes of rice (
Oryza sativa L.) under salinity stress.
International Journal of Advanced Biological and Biomedical Research,
1(11), 1337-1350.
http://ijabbr.com/upload/IJABBR-2013-1118. (In Farsi with English summary).
Bamisile, B.S., Dash, C.K., Akutse, K.S., Keppanan, R., Wang, L. (2018). Fungal endophytes: Beyond herbivore management.
Frontiers Microbiology, 9, 1–11.
https://doi.org/10.3389/fmicb.2018.00544.
Bano, A., & Muqarab, R. (2017). Plant defense induced by PGPR against
Spodoptera litura in tomato (
Solanum lycopersicum L.).
Plant Biology, 19(13), 406–412. https://doi.org/
10.1111/plb.12535
Baron, N.C., & Rigobelo, E.C. (2022). Endophytic fungi: a tool for plant growth promotion and sustainable agriculture.
Mycology, 13(1), 39-55. https://doi.org/
10.1080/21501203.2021.1945699.
Batool, R., Umer, M.J., Wang, Y., He, K., Zhang, T., Bai, S., Zhi, Y., Chen, J., & Wang, Z. (2020). Synergistic effect of
Beauveria bassiana and
Trichoderma asperellum to induce maize (
Zea mays L.) defense against the Asian corn borer,
Ostrinia furnacalis (Lepidoptera, Crambidae) and larval immune response.
International journal of molecular sciences,
21(21), p.8215.
https://doi.org/10.3390/ijms21218215.
Behie, S. W., Jones, S. J., & Bidochka, M. J. (2015). Plant tissue localization of the endophytic insect pathogenic fungi
Metarhizium and
Beauveria.
Fungal Ecology,
13, 112-119.
https://doi.org/10.1016/j.funeco.2014.08.001.
Blumenstein, K. (2010). Characterization of endophytic fungi in the genus Ulmus: putativeagents for the biocontrol of Dutch elm disease (DED). Diploma’s Thesis). University of Kassel.
Bu, N., Li, X., Li, Y., Ma, C., Ma, L., & Zhang, C. (2012). Effects of Na2CO3 stress on photosynthesis and antioxidative enzymes in endophyte infected and non-infected rice.
Ecotoxicology and Environmental Safety, 78: 35-40. https://doi.org/
10.1016/j.ecoenv.2011.11.007 .
Bujor, O.C., Talmaciu, I.A., Volf, I., & Popa, V.I. (2015). Biorefining to recover aromatic compounds with biological properties.
TAPPI Journal, 14(3): 187-193. https://doi.org/
10.32964/TJ14.3.187.
Canassa, F., Tall, S., Moral, R.A., de Lara, I.A., Delalibera Jr, I., & Meyling, N.V. (2019). Effects of bean seed treatment by the entomopathogenic fungi
Metarhizium robertsii and
Beauveria bassiana on plant growth, spider mite populations and behavior of predatory mites.
Biological Control,
132(10), pp.199-208. https://doi.org/
10.1016/j.biocontrol.2019.02.003.
Chekanai, V., Chikowo, R., & Vanlauwe, B. (2018). Response of common bean (
Phaseolus vulgaris L.) to nitrogen, phosphorus and rhizobia inoculation across variable soils in Zimbabwe.
Agriculture, ecosystems & environment,
266, pp.167-173.
https://doi.org/10.1016/j.agee.2018.08.010.
Chen, Y., Mao, W., Tao, H., Zhu, W., Qi, X., Chen, Y., ... & Li, N. (2011). Structural characterization and antioxidant properties of an exopolysaccharide produced by the mangrove endophytic fungus Aspergillus sp. Y16.
Bioresource Technology,
102(17), 8179-8184.
https://doi.org/10.1016/j.biortech.2011.06.048.
Chowdhary, K., & Sharma, S. (2020). Plant growth promotion and biocontrol potential of fungal endophytes in the inflorescence of
Aloe vera L..
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences,
90(5), 1045–1055.
https://doi.org/10.1007/s40011-020-01173-3.
Contreras-Cornejo, H.A., Macías-Rodríguez, L., Cortés-Penagos., C. & López-Bucio, J. (2009).
Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis.
Plant physiology, 149(3), pp.1579-1592.
https://doi.org/10.1104/pp.108.130369.
Darkwa, K., Ambachew, D., Mohammed, H., Asfaw, A., & Blair, M.W. (2016). Evaluation of common bean (
Phaseolus vulgaris L.) genotypes for drought stress adaptation in Ethiopia.
The crop journal,
4(5), pp.367-376.
https://doi.org/10.1016/j.cj.2016.06.007.
Dash, C.K., Bamisile, B.S., Keppanan, R., Qasim, M., Lin, Y., Islam, S.U., Hussain, M., & Wang, L. (2018). Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L. (Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari: Tetranychidae). Microbial Pathogenesis, 125, 385–392. https://doi: 10.1016/j.micpath.2018.09.044.
Dildey, O.D.F., Broetto, L., Rissato, B.B., Coltro-Roncato, S., Dalâ, E.G., Meinerz, C.C., Henkemeier, N.P., Stangarlin, J.R., Kuhn, O.J., & Webler, T.F.B. (2016).
Trichoderma-bean interaction: defense enzymes activity and endophytism.
African Journal of Agricultural Research,
11(43), 4286-4292.
https://doi.org/10.5897/AJAR2016.11687.
Eleiwa, M.E., Hamed, E.R., & Shehata, H.S. (2012) The role of biofertilizers and/or some micronutrients on wheat plant (Triticum aestivum L.) growth in newly reclaimed soil. Journal of Medicinal Plants Research, 6, 3359-3369.
Elena, G.J., Beatriz, P.J., Alejandro, P., & Lecuona, R. (2011).
Metarhizium anisopliae (Metschnikoff) Sorokin promotes growth and has endophytic activity in tomato plants.
Advances in Biological Research, 5(1), pp.22–27.
https://api.semanticscholar.org/CorpusID:86199236.
El-Khallal, S.M. (2007). Induction and modulation of resistance in tomato plants against Fusarium wilt disease by bioagent fungi (arbuscular mycorrhiza) and/or hormonal elicitors (jasmonic acid & salicylic acid): 1-Changes in growth, some metabolic activities and endogenous hormones related to defence mechanism. Australian Journal of Basic and Applied Sciences, 14(1), 691–705.
FAO. 2022. Crops and livestock products. [Available online at https://www.fao.org/faostat/en/#data/QCL].
Fatahuddin, A.N., Daud, I.D., & Chandra, Y. (2003). Uji kemampuan Beauveria bassiana Vuillemin (Hyphomycetes: Moniliales) sebagai endofit pada tanaman kubis dan penyaruh terhadap larva Plutella Xylostella L. (Lepidoptera: Yponomeutidae). Fitomrdik Journal Fitomedika, 5(1), 16-9.
Garcia, J.E., Posadas, J.B., Perticari, A., & Lecuona, R.E. (2011). Metarhizium anisopliae (Metschnikoff) Sorokin promotes growth and has endophytic activity in tomato plants. Advances in Biological Research, 5(1), 22–27.
García-Latorre, C., Rodrigo, S., Marin-Felix, Y., Stadler, M., & Santamaria, O. (2023). Plant-growth promoting activity of three fungal endophytes isolated from plants living in dehesas and their effect on Lolium multiflorum.
Scientific Reports,
13(1), p.7354. https://doi.org/
10.1038/s41598-023-34036-8.
Gautam, S., Mohankumar, S., & Kennedy, J.S. (2016). Induced host plant resistance in cauliflower by Beauveria bassiana. Journal of Entomology and Zoology Studies, 4(2), 476-482.
Greenfield, M., Gómez-Jiménez, M.I., Ortiz, V., Vega, F.E., Kramer, M., & Parsa, S. (2016).
Beauveria bassiana and
Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation.
Biological Control,
95, pp.40-48.
https://doi.org/10.1016/j.biocontrol.2016.01.002.
Gupta, S., Chaturvedi, P., Kulkarni, M.G., & Van Staden, J. (2020). A critical review on exploiting the pharmaceutical potential of plant endophytic fungi.
Biotechnology Advances,
39, 107462. https://doi.org/
10.1016/j.biotechadv.2019.107462.
Han, D., Wang, K., Long, F., Zhang, W., Yao, X., & Chen, S. (2022). Effects of endophytic fungi on the secondary metabolites of
Hordeum bogdanii under alkaline stress.
AMB Express, 12(73). https://doi.org/
10.1186/s13568-022-01414-w.
Hashem, A., Abd-Allah, E. F., Alqarawi, A., Al-Huqail, A. A., Wirth, S., & Egamberdieva, D. (2016) The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of
Acacia gerrardii under salt stress.
Frontiers in microbiology, 7, 1089.
https://doi.org/10.3389/fmicb.2016.01089 .
Helander, M., Ahlholm, J., Sieber, T. N., Hinneri, S., & Saikkonen, K. (2007). Fragmented environment affects birch leaf endophytes.
New Phytologist,
175(3), 547-553. DOI: https://doi.org/
10.1111/j.1469-8137.2007.02110.x .
Joshi, P.K., & Rao, P.P. (2017). Global pulses scenario: status and outlook.
Annals of the New York Academy of Sciences,
1392(1), 6-17.
https://doi.org/10.1111/nyas.13298.
Kaewchai, S., Soytong, K., & Hyde, K.D. (2009). Mycofungicides and fungal biofertilizers. Fungal Diversity, 38, 25- 50.
Kar, M., & Mishra, D. (1976). "Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence.
Plant physiology,
57(2), 315-319.
https://doi.org/10.1104/pp.57.2.315
Kawalekar, J.S. (2013). Role of biofertilizers and biopesticides for sustainable agriculture. Journal of Bio Innovation, 2(3), 73-78.
Khaledi, N., & Taheri, P. (2016). Biocontrol mechanisms of
Trichoderma harzianum against soybean charcoal rot caused by
Macrophomina phaseolina.
Journal of Plant Protection Research,
56 (1): 21–31. https://doi.org/
10.1515/jppr-2016-0004.
Khan, A. L., Hamayun, M., Kim, Y. H., Kang, S. M., Lee, J. H., & Lee, I. J. (2011). Gibberellins producing endophytic
Aspergillus fumigatus sp LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress.
Process Biochemistry, 46(2), 440–447.
https://doi.org/10.1016/j.procbio.2010.09.013.
Kubicek, C.P., Herrera-Estrella, A., Seidl-Seiboth, V. et al. (2011). Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of
Trichoderma,
Genome Biology, 12(4), 1–15. https://doi.org/
10.1186/gb-2011-12-4-r40.
Kumar, S., Thakur, M., & Rani, A. (2014).
Trichoderma: Mass production, formulation, quality control, delivery and its scope in commercialization in India for the management of plant diseases.
African Journal of Agricultural Research,
9(53), 3838-3852.
https://doi.org/10.5897/AJAR2014. 9061.
Kumar, S., Abedin, M. M., Singh, A. K., & Das, S. (2020). Role of phenolic compounds in plant-defensive mechanisms.
Plant phenolics in sustainable agriculture, 1, 517-532. DOI:
10.1007/978-981-15-4890-1_22.
Landa, B.B., Lopez, D.C., Jimenez, F.D., Montes, B.M., Munoz, L.F.J., Ortiz, U.A., & Quesada, M.E. (2013). In plant a detection and monitorization of endophytic colonization by a
Beauveria bassiana strain using a new-developed nested and quantitative PCR-based assay and confocal laser scanning microscopy.
Journal Invertebr Pathology, 114(2), 128–38. https://doi.org/
10.1016/j.jip.2013.06.007.
Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy.
Current protocols in food analytical chemistry,
1(1), F4-3.
https://doi.org/10.1002/0471142913.faf0403s01.
Liu, Y., Yang, Y., & Wang, B. (2022). Entomopathogenic fungi
Beauveria bassiana and
Metarhizium anisopliae play roles of maize (
Zea mays) growth promoter,
Scientific Reports,
12(1), 15706. https://doi.org/
10.1038/s41598-022-19899-7.
Lopez, D. C., & Sword, G. A. (2015). The endophytic fungal entomopathogens
Beauveria bassiana and
Purpureocillium lilacinum enhance the growth of cultivated cotton (
Gossypium hirsutum) and negatively affect survival of the cotton bollworm (
Helicoverpa zea).
Biological Control,
89, 53–60.
http://dx.doi.org/10.1016/j.biocontrol.2015.03.010.
Lubna, Asaf, S., Hamayun, M., Gul, H., Lee, I. J., & Hussain, A. (2018). Aspergillus niger CSR3 regulates plant endogenous hormones and secondary metabolites by producing gibberellins and indoleacetic acid.
Journal of Plant Interactions,
13(1), 100-111.
https://doi.org/10.1080/17429145.2018.1436199.
Mac-Adam, J.W., Nelson, C.J., & Sharp, R.E. (1992). Peroxidase Activity in the leaf elongation zone of tall fescue.
Plant Physiology,
99, 872– 878.
https://doi.org/10.1104/pp.99.3.872.
Macuphe, N., Oguntibeju, O.O., & Nchu, F. (2021). Evaluating the endophytic activities of
Beauveria bassiana on the physiology, growth, and antioxidant activities of extracts of lettuce (
Lactuca sativa L.).
Plants,
10(6), p.1178.
https://doi.org/10.3390/plants10061178.
Mahmoud, G.A.E., Abdel-Sater, M.A., Al-Amery, E., & Hussein, N.A. (2021). Controlling
Alternaria cerealis MT808477 tomato Phytopathogen by
Trichoderma harzianum and tracking the plant physiological changes.
Plants,
10(9), 1846.
https://doi.org/10.3390/plants10091846.
Mantzoukas, S., Lagogiannis, I., Mpousia, D., Ntoukas, A., Karmakolia, K., Eliopoulos, P.A., & Poulas, K. (2021).
Beauveria bassiana endophytic strain as plant growth promoter: The case of the grape vine Vitis vinifera.
Journal of Fungi,
7(2), p.142.
https://doi.org/10.3390/jof7020142.
Mirzaeipour, Z., Bazgir, E., Zafari, D., & Darvishnia, M. (2023). Selection and biocontrol efficiency of
Trichoderma isolates against
Rhizoctonia root rot and their growth promotion effects on strawberry plants.
Journal of Plant Pathology,
105(4), 1563-1579.
https://doi.org/10.1007/s42161-023-01488-w.
Moloinyane, S., & Nchu, F. (2019). The effects of endophytic
Beauveria bassiana inoculation on infestation level of
Planococcus ficus, growth and volatile constituents of potted greenhouse grapevine (
Vitis vinifera L.).
Toxins,
11(2), p.72. https://doi.org/
10.3390/toxins11020072
Naveed, S., & Qamar, F. (2014). A simple assay of esomeprazole using UV spectrophotometer. The Global Journal of Pharmaceutical Research, 3, 1921-25.
Obala, J., Mukankusi, C., Rubaihayo, P. R., Gibson, P., & Edema, R. (2012). Improvement of resistance to Fusarium root rot through gene pyramiding in common bean.
African Crop Science Journal,
20(1).
https://hdl.handle.net/10568/96296.
Omomowo, O. I., & Babalola, O. O. (2019). Bacterial and fungal endophytes: tiny giants with immense beneficial potential for plant growth and sustainable agricultural productivity.
Microorganisms,
7(11), 481. doi:
10.3390/microorganisms7110481
Parsa, S., Ortiz, V., & Vega, F.E. (2013). Establishing fungal entomopathogens as endophytes: towards endophytic biological control. JoVE (Journal of Visualized Experiments), 11(74), p.e50360. https ://doi.org/10.3791/50360.
Pourhadian, H., Hadavand, N., Khalili, M., & Kazem Aslani, H. (2022). Evaluation of growth indices, yield, and yield components of red bean cultivars in cold climatic conditions. Plant Production and Genetics, 3(1), 133-146. doi: 10.34785/J020.2022.120.
Rai, M., Rathod, D., Agarkar, G., Dar, M., Brestic, M., Pastore, G.M., & Junior, M.R.M. (2014). Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture.
Symbiosis,
62, pp.63-79.
http://dx.doi.org/10.1007/s13199-014-0273-3.
Rodriguez, R.J., White, J.F., Arnold, A.E., Jr., & Redman, R.S. (2009). Fungal endophytes: Diversity and functional roles.
New Phytologist,
182, 314–330.
https://doi.org/10.1111/j.1469-8137.2009.02773.x.
Rozpa˛dek, P., We˛z˙owicz, K., Nosek, M., Waz˙ny, R., Tokarz, K., Lembicz, M., Miszalski, Z., & Turnau, K. (2015). The fungal endophyte Epichloë typhina improves photosynthesis efficiency of its host orchard grass (Dactylis glomerata). Planta, 242(4), 1025–1035. https://doi.org/10.1007/s00425-015-2337-x. Epub 2015 Jun 10.
Salimi, T., Alymanesh, M. R., Fazeli, A., & Bagnazari, M. (2023). The effect of endophytic bacterium Enterobacter sp. isolated from basil on growth stimulation and control of tomato seedling bacterial canker disease. Plant Protection (Scientific Journal of Agriculture), 46(1), 39-55. doi: 10.22055/ppr.2023.42716.1672.
Sánchez-Rodríguez, A. R., Raya-Díaz, S., Zamarreño, Á. M., García-Mina, J. M., Campillo, M. D., & Quesada-Moraga, E. (2018). An endophytic
Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworm (
Spodoptera littoralis) larvae.
Biological Control, 116, 90–102.
https://doi.org/10.1016/j.biocontrol.2017.01.012.
Singh, D.P., Singh, V., Gupta, V.K., Shukla, R., Prabha, R., Sarma, B.K., & Patel, J.S. (2020). Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress.
Science. Reports,
10(1), 1-17.
https://doi.org/10.1038/s41598-020-61140-w.
Sinno, M., Ranesi, M., Di Lelio, I., Iacomino, G., Becchimanzi, A., Barra, E., Molisso, D., Pennacchio, F., Digilio, M.C., Vitale, S., & Turrà, D. (2021). Selection of endophytic
Beauveria bassiana as a dual biocontrol agent of tomato pathogens and pests.
Pathogens,
10(10), p.1242.
https://doi.org/10.3390/pathogens10101242.
Solhjouy-Fard, S., Talaei-Hassanloui, R., Maali-Amiri, R., & A. Sword, G. (2023). Effect of endophytic
Beauveria bassiana on growth traits of five rapeseed varieties
Brassica napus.
Journal of Applied Research in Plant Protection,
12(1), 87-94.
https://doi.org/10.22034/arpp.2022.15637.
Sui, L., Lu, Y., Zhou, L., Li, N., Li, Q., & Zhang, Z. (2023). Endophytic
Beauveria bassiana promotes plant biomass growth and suppresses pathogen damage by directional recruitment.
Frontiers in Microbiology,
14, p.1227269.
https://doi.org/10.3389/fmicb.2023.1227269 .
Tall, S., & Meyling, N. V. (2018). Probiotics for plants? Growth promotion by the entomopathogenic fungus Beauveria bassiana depends on nutrient availability.
Microbial ecology,
76(4), 1002-1008. doi:
10.1007/s00248-018-1180-6.
Tandon, A., Fatima, T., Shukla, D., Tripathi, P., Srivastava, S., & Singh, P. C. (2020). Phosphate solubilization by
Trichoderma koningiopsis (NBRI-PR5) under abiotic stress conditions.
Journal of King Saud University-Science,
32(1), 791-798.
https://doi.org/10.1016/j.jksus.2019.02.001.
Vincent, D., Rafiqi, M., & Job, D. (2020). The multiple facets of plant–fungal interactions revealed through plant and fungal secretomics.
Frontiers in Plant Science,
10, 1626.
https://doi.org/10.3389/fpls.2019.01626 .
Vermerris, W., Nicholson, R., Vermerris, W., & Nicholson, R. (2006). The role of phenols in plant defense.
Phenolic compound biochemistry, 211-234. https://doi.org/
10.1007/978-1-4020-5164-7_6
Yang, B., Wang, X. M., Ma, H. Y., Yang, T., Jia, Y., Zhou, J., & Dai, C. C. (2015). Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere.
Frontiers in microbiology,
6, 982.
https://doi.org/10.3389/fmicb.2015.00982 .
Zaidi, N. W., Dar, M. H., & Singh S, U. S. (2014).
Trichoderma species as abiotic stress relievers in plants. In Gupta, V.G., Schmoll, M., Herrea-Estrella, A.,Upadhyay, R. S., Druzhinina, I. and Tuohy, M. (Eds.),
Biotachnology and Bilogy of Trichoderma (Pp. 515-523). Elsevier, Walthm, MA 02451, USA. https://doi.org/
10.1016/B978-0-444-59576-8.00038-2.
Zhang, H.M. (2008.) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant Journal, 56(2),264–273. https://doi.org/10.1111/j.1365-313X.2008.03593.x. Epub 2008 Jun 28.
© 2024 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (
http://creativecommons.org/licenses/by-nc/4.0/.