Fertility life table parameters of the cabbage aphid, Brevicoryne brassicae ‎affected by sublethal concentration of BotanAphid aphidicide on two ‎cabbage varieties

Document Type : Research paper-Persian

Authors

1 M.Sc. student, Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran

2 Professor, Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran

3 Associate Professor, Department of Plant Protection Research, Agricultural and Natural Resources Research Center of West Azarbaijan, AREEO, Urmia, Iran

4 Researcher, Department of Plant Protection Research, Agricultural and Natural Resources Research Center of West Azarbaijan, AREEO, Urmia, Iran

Abstract

Background and Objectives

Cabbage aphid, Brevicoryne brassicae L. is one of the important pests of brassicaceous plants ‎worldwide, causing considerable damage to them. It not only damages host plants by directly ‎sucking the tissue sap and excreting honeydew, but also transmits some plant pathogenic viruses ‎and further weakens the host crops. In one hand, due to the adverse effects of irregular chemical ‎pesticide use on vegetables such as cabbage, and indecisive effects of biocontrol agents in pest ‎control, exploring alternative methods for cabbage aphid management such as botanical pesticide ‎application sounds appropriate and necessary. Therefore, in the present study, acute toxicity of the ‎botanical insecticide, BotanAphid was studied against cabbage aphid on white and red cabbages by ‎determining their corresponding LC50 values. Moreover, their sublethal (corresponding LC25 ‎values) effect was assessed on the fertility life table parameters of the pest in both white and red ‎cabbages.‎

Materials and Methods

After preliminary bioassays based on recommended concentration (2 % for cotton aphid) in both ‎plant cultivars, five concentrations were estimated by logarithmic intervals in white (0.45, 0.81, ‎‎1.48, 2.69 and 4.9 percent) and red (0.5, 0.89, 1.58, 2.82 and 5.01 percent) cabbages. Control ‎aphids were treated with distilled water containing 0.05% citowett as surfactant. Thirty newly ‎emerged adult aphids were randomly selected for each treatment. Ten insects were placed on each ‎leaf disc and treated uniformly by a hand sprayer. After drying, insects were placed within Petri ‎dish with ventilation. The number of dead insects were counted after 24 h. Bioassay data were ‎analyzed by probit analysis using SAS 24.0. To study the sublethal effects of BotanAphid on ‎fertility life table parameters of B. brassicae, the calculated LC25 values (0.675 and 0.765 percents ‎respectively for white and red cabbage cultivars) of BotanAphid were used. For each treatment and ‎control, 50 adult aphids were treated similar to bioassays. All treated insects were removed after 24 ‎h and the number of 50 newly emerged first instar nymphs from treated adults were randomly ‎selected and kept individually. The number of dead insects and produced nymphs were recorded ‎daily and removed from experimental units. Life table data were analyzed using Twosex-MsChart ‎program and the means and standard errors of parameters were calculated by bootstrap method ‎using 100000 replicates.‎

Results

According to the bioassays, the mean lethal concentrations (LC50 values) of this pesticide on ‎cabbage aphid were 1.552 and 1.704 percents respectively in white and red cabbages. In life table ‎study with LC25 values of aphicide, the lowest fertility and reproduction period of B. brassicae ‎were remarkably decreased on BotanAphid treatment in both white and red cabbages compared to ‎corresponding control (insecticide-free) units. Furthermore, pre-adult duration was prolonged and ‎survival of treated aphids was decreased considerably when compared to control. In addition, ‎insecticide treatment caused intrinsic rate of increase (r), as the most important population growth ‎parameter, of the cabbage aphids to be lowered significantly compared to corresponding control ‎insects. Also, BotanAphid sublethal concentration resulted in considerable decrease in other life ‎table parameters when compared to appropriate control insects in both cabbage cultivars. ‎Reproduction values and life expectancies were the highest in control aphids and the lowest in ‎LC25-treated insects.‎

Discussion

Our results revealed that B. brassicae suffered considerable mortality from BotanAphid, as a ‎botanical insecticide in nearly recommended concentrations (2 %). Comparison of LC50 confidence ‎intervals (95%) showed that susceptibility of the pest was not statistically different in treated aphids ‎on white and red cultivars. This showed that the plant cultivar did not impose significant impact on ‎aphid mortality. Given that the chemical content of sap and nutritional quality of two cultivars are ‎varying in different cultivars, these did not affect adult aphids’ mortality encountering BotanAphid. ‎Using LC25 value in each cultivar for analyzing life table parameters demonstrated the its negative ‎influence on all parameters compared to control insects in both cultivars. Besides these results, due ‎to botanical nature of BotanAphid and its low risk for non-target organisms especially human, this ‎pesticide application is recommendable on fresh-consuming vegetables such as different cabbage ‎cultivars.‎

Keywords

Main Subjects


References
Abdu-Allah, G. A.-L. M. (2017). Selective toxicity of certain recent insecticides and botanical extracts to Diaeretiella rapae parasitoid and its host, Brevicoryne brassicae. Egyptian Scientific Journal of Pesticides, 3(2), 1-10.
Ahmad, M., & Akhtar, S. (2013). Development of insecticide resistance in field populations of Brevicoryne brassicae (Hemiptera: Aphididae) in Pakistan. Journal of Economic Entomology, 106, 954-959. DOI: DOI: https://doi.org/10.1603/ec12233
Amirfanak, V., Safavi, S. A., & Forouzan, M. (2023). Study on the life table parameters of the cabbage aphid, Brevicoryne brassicae (L.) (Hemiptera: Aphididae) influenced by sublethal concentrations of the matrine. Plant Protection, 45(4), 19-35. DOI: https://doi.org/10.22055/ppr.2022.17991. (In Farsi)
Björkman, M., Klingen, I., Birch, A. N., Bones, A. M., Bruce, T. J., Johansen, T. J., Meadow, R., Mølmann, J., Seljåsen, R., & Smart, L. E. (2011). Phytochemicals of Brassicaceae in plant protection and human health–Influences of climate, environment and agronomic practice. Phytochemistry, 72(7), 538-556. DOI: https://doi.org/10.1016/j.phytochem.2011.01.014.
Blackman, R. L., & Eastop, V. F. (2000). Aphids of the World's Crops: An Indentification and Information Guide. (2nd ed.). John Wiley and Sons, London.
Brito, W. A. d., Siquieroli, A. C. S., Andaló, V., Duarte, J. G., Sousa, R. M. F. d., Felisbino, J. K. R. P., & Silva, G. C. d. (2021). Botanical insecticide formulation with neem oil and D-limonene for coffee borer control. Pesquisa Agropecuária Brasileira, 56, 1-9. DOI: https://doi.org/10.1590/S1678-3921.pab2021.v56.02000.
Chen, N. (1990). Pesticide bioassay technology, Beijing: Beijing Agricultural University Press: 95-109.
Chi, H., & Liu, H. (1985). Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinica, 24(2), 225-240.
Chi, H. (1988). Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 17(1), 26-34. DOI: https://doi.org/10.1093/ee/17.1.26
Chi, H. (2020). TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. http://140.120.197.174/Ecology/download/ TWOSEX-MSChart.rar
Cutler, G. C. (2013). Insects, insecticides and hormesis: evidence and considerations for study. Dose-response, 11(2), 154-178. DOI: https://doi.org/10.2203/dose-response.12-008.Cutler.
Desneux, N., Decourtye, A., & Delpuech, J.-M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52, 81-106. DOI: https://doi.org/10.1146/annurev.ento.52.110405.091440.
Ellis, P. R., Pink, D. A. C., Phelps, K., Jukes, P. L., Breeds, S. E., & Pinnegar, A. E. (1998). Evaluation of a core collection of brassica accessions for resistance to Brevicoryne brassicae. Euphitica, 103, 149-160. DOI: https://doi.org/10.1023/A:1018342101069
Gerszberg, A. (2018). Tissue culture and genetic transformation of cabbage (Brassica oleracea var. capitata): an overview. Planta, 248, 1037-1048. DOI: https://doi.org/10.1007/s00425-018-2961-3.
Gorur, G., Abdullah, M. I., & Isik, M. (2008). Insecticidal activity of the Thymus, Veronica and Agrimonia’s essential oils against the cabbage aphid, Brevicoryne brassicae. Acta Phytopathologica et Entomologica Hungarica, 43(1), 201-208. DOI: 10.1556/APhyt.43.2008.1.19
Grdiša, M., & Gršić, K. (2013). Botanical insecticides in plant protection. Agriculturae conspectus scientificus, 78(2), 85-93.
Heidary, M., Jafary, Sh., Karimzadeh, J., Negahban, M., & Shakarami, J. (2020). The effects of pure and nanocapsulated formulations of Thymus daenensis Celak. (Lamiaceae) essential oil on life-table parameters of cabbage aphid (Brevicoryne brassicae L.) (Hem.: Aphididae). Plant Pest Research, 10(2), 15-32. DOI: 10.22124/iprj.2020.4289
Hernandez-Moreno, D., De La Casa-Resino, I., Lopez-Beceiro, A., Fidalgo, L., Soler, F., & Perez-Lopez, M. (2013). Secondary poisoning of non-target animals in an Ornithological Zoo in Galicia (NW Spain) with anticoagulant rodenticides: a case report. Veterinarni Medicina, 58(10), 553-559. DOI: https://doi.org/10.17221/7087-VETMED.
Iftikhar, A., Hafeez, F., Aziz, M. A., Hashim, M., Naeem, A., Yousaf, H. K., Saleem, M. J., Hussain, S., Hafeez, M., & Ali, Q. (2022). Assessment of sublethal and transgenerational effects of spirotetramat, on population growth of cabbage aphid, Brevicoryne brassicae L.(Hemiptera: Aphididae). Frontiers in Physiology, 13, 2461-2473. DOI: https://doi.org/10.3389/fphys.2022.1014190.
Ikbal, C., & Pavela, R. (2019). Essential oils as active ingredients of botanical insecticides against aphids. Journal of Pest Science, 92, 971-986. DOI: https://doi.org/10.1007/s10340-019-01089-6
Isman, M. B. (1997). Neem and other botanical insecticides: barriers to commercialization. Phytoparasitica, 25, 339-344. DOI: https://doi.org/10.1007/BF02981099.
Isman, M. B., Wilson, J. A., & Bradbury, R. (2008). Insecticidal activities of commercial rosemary oils (Rosmarinus officinalis.) against larvae of Pseudaletia unipuncta. and Trichoplusia ni. in relation to their chemical compositions. Pharmaceutical Biology, 46(1-2), 82-87. DOI: https://doi.org/10.1080/13880200701734661.
Jahan, F., Abbasipour, H., & Hasanshahi, G. (2016). Fumigant toxicity and nymph production deterrence effect of five essential oils on adults of the cabbage aphid, Brevicoryne brassicae L. (Hemiptera: Aphididae). Journal of Essential Oil Bearing Plants, 19(5), 1111-1118. DOI: http://dx.doi.org/10.1080/0972060X.2014.935032
Jarrahi, A., and Safavi, S. A. (2015). Contact toxicity of Thymus kotchyanus and Satureja hortensis oils on Brevicoryne brassicae Linnaeus (Hem., Aphididae) in closed experimental system. 1st Iranian International Congress of Entomology, 29-31 August. Tehran, pp. 287-291.
Joseph, B., & Sujatha, S. (2012). Insight of botanical based biopesticides against economically important pest. International Journal of Pharmacy & Life Sciences, 3(11), 2138-2148.
Kahan, A., Padín, S., Ricci, M., Ringuelet, J., Cerimele, E., Ré, S., Henning, C., & Basso, I. (2008) Toxic activity of laurel essential oil and cineoleon Brevicoryne brassicae L. over cabbage. Revista de la Facultad de Ciencias Agrarias UNCuyo, 40, 41-48.
Karakaş, M. (2017). Use of Aromatic Plant Extracts as Bio-insecticides for the Control of Stored-Product Insect, Sitophilus granarius. International Journal of Entomology Research, 2(1), 27-29.
Karanja, J., Pallmann, P., & Poehling, H.-M. (2023). Systemic slow-release neem formulations: the future of cabbage aphids, Brevicoryne brassicae control. Open Access Library Journal, 10, e10158. DOI: https://doi.org/10.4236/oalib.1110158
Kiani, M., Karimi, J., Abbasipour, H. & Askarianzadeh, A. (2024). Fumigant toxicity of essential oil of the Galbanum, Ferula gummosa on biological parameters of the cabbage aphid, Brevicoryne brassicae L. (Hemipera: Aphididae). Journal of Phytoallexins, 1(1), 35-50.
Küçükaydın, S., Tel-Çayan, G., Duru, M. E., Kesdek, M., & Öztürk, M. (2021). Chemical composition and insecticidal activities of the essential oils and various extracts of two Thymus species: Thymus cariensis and Thymus cilicicus. Toxin Reviews, 40(4), 1461-1471. DOI: https://doi.org/10.1080/15569543.2020.1731552.
Lashkari, M. R., Sahragard, A., & Ghadamyari, M. (2007). Sublethal effects of imidacloprid and pymetrozine on population growth parameters of cabbage aphid, Brevicoryne brassicae on rapeseed, Brassica napus L. Insect Science, 14(3), 207-212. DOI: https://doi.org/10.1111/j.1744-7917.2007.00145.x.
Lengai, G. M., Muthomi, J. W., & Mbega, E. R. (2020). Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Scientific African, 7, 1-30. DOI: https://doi.org/10.1016/j.sciaf.2019.e00239.
Lu, C., Chang, C.-H., Palmer, C., Zhao, M., & Zhang, Q. (2018). Neonicotinoid residues in fruits and vegetables: an integrated dietary exposure assessment approach. Environmental Science & Technology, 52(5), 3175-3184. DOI: https://pubs.acs.org/doi/10.1021/acs.est.7b05596.
Mahmood, I., Imadi, S. R., Shazadi, K., Gul, A., & Hakeem, K. R. (2016). Effects of pesticides on environment. Plant, Soil and Microbes, 1, 253-269. DOI: https://doi.org/10.1007/978-3-319-27455-3_13.
Mahmoodi, L., Mehrkhou, F., Guz, N., Forouzan, M., & Atlihan, R. (2020). Sublethal effects of three insecticides on fitness parameters and population projection of Brevicoryne brassicae (Hemiptera: Aphididae). Journal of Economic Entomology, 113(6), 2713-2722. DOI: https://doi.org/10.1093/jee/toaa193.
Miresmailli, S., & Isman, M. B. (2006). Efficacy and persistence of rosemary oil as an acaricide against twospotted spider mite (Acari: Tetranychidae) on greenhouse tomato. Journal of Economic Entomology, 99(6), 2015-2023. DOI: https://doi.org/10.1093/jee/99.6.2015.
Nawaz, M., Mabubu, J. I., & Hua, H. (2016). Current status and advancement of biopesticides: microbial and botanical pesticides. Journal of Entomology and Zoology Studies, 4(2), 241-246.
Pahlavan Yali, M. & Mohammadi Anaii, M. (2017). Studying, the insecticidal effects of Melia azedarach and Citrus limonum extracts on two aphid species. Journal of Plant Protection, 31 (3), 496-504. DOI: https://doi.org/10.22067/JPP.V31I3.58927
Pavela, R. (2006). Insecticidal activity of essential oils against cabbage aphid Brevicoryne brassicae. Journal of Essential Oil Bearing Plants, 9(2), 99-106. DOI: http://dx.doi.org/10.1080/0972060X.2006.10643479
Pavela, R. (2007). Possibilities of botanical insecticide exploitation in plant protection. Pest Technology, 1(1), 47-52.
Pavela, R., Barnet, M., & Kocourek, F. (2004). Effect of azadirachtin applied systemically through roots of plants on the mortality, development and fecundity of the cabbage aphid (Brevicoryne brassicae). Phytoparasitica, 32, 286-294. DOI: https://doi.org/10.1007/BF02979823.
Pavela, R., Bartolucci, F., Desneux, N., Lavoir, A.-V., Canale, A., Maggi, F., & Benelli, G. (2019). Chemical profiles and insecticidal efficacy of the essential oils from four Thymus taxa growing in central-southern Italy. Industrial Crops and Products, 138, 111460-111475. DOI: https://doi.org/10.1016/j.indcrop.2019.06.023.
Pavela, R., Benelli, G., Canale, A., Maggi, F., & Mártonfi, P. (2020). Exploring essential oils of Slovak medicinal plants for insecticidal activity: The case of Thymus alternans and Teucrium montanum subsp. jailae. Food and Chemical Toxicology, 138, 111203. DOI: https://doi.org/10.1016/j.fct.2020.111203.
Phoofolo, Mabaleha, & Mekbib (2013). Laboratory assessment of insecticidal properties of Tagetes minuta crude extracts against Brevicoryne brassicae on cabbage. Journal of Entomology and Nematology, 5(6), 70-76. DOI: https://doi.org/10.5897/JEN2013.0080.
Rajabi, h., Safavi, S. A., & Forouzan, M. (2022a). Biological parameters of the cabbage aphid, Brevicoryne brassicae, encountering the sublethal concentration (LC25) of chlorfluazuron. Plant Pest Research, 12(2), 21-34. DOI: https://doi.org/10.22124/iprj.2022.5792. (In Farsi)
Rajabi, H., Safavi, S. A., & Forouzan, M. (2022b). Effect of very low concentration (LC10) of chlorfluazuron insecticide on life table parameters of the cabbage aphid Brevicoryne brassicae (Hemiptera: Aphididae). Journal of Entomological Society of Iran, 41(4), 351-363. DOI: https://doi.org/10.22117/jesi.2022.358653.1459. (In Farsi)
Romasi, F., Vahedi, H., Moeeni Naghadeh, N., & Mahmoudvand, M. (2021). The effect of botanical insecticides Palizin® and Tondexir® on cabbage waxy aphid, Brevicoryne brassicae L. under laboratory conditions. Plant Protection (Scientific Journal of Agriculture), 43(4), 71-89. DOI: https://doi.org/10.22055/ppr.2021.16763. (In Farsi)
Šamec, D., Urlić, B., & Salopek-Sondi, B. (2019). Kale (Brassica oleracea var. acephala) as a superfood: Review of the scientific evidence behind the statement. Critical Reviews in Food Science and Nutrition, 59(15), 2411-2422. DOI: https://doi.org/10.1080/10408398.2018.1454400.
Saroukolai, A. T., Moharramipour, S.& Meshkatalsadat, M. H. (2010). Insecticidal properties of Thymus persicus essential oil against Tribolium castaneum and Sitophilus oryzae. Journal of pest science, 83, 3-8. DOI: https://doi.org/10.1007/s10340-009-0261-1.
Shahmohammadi, S., Lashkari, M., Zohdi, H., Memarizadeh, N.& Mehrparvar, M. (2023). Sublethal effects of some biorational pesticides on population growth parameters of cabbage aphid, Brevicoryne brassicae. Journal of Crop Protection, 12(4), 403-413.
Shonga E., & Getu, E. (2021). Efficacy of plant derived and synthetic insecticides against cabbage aphid, Brevicoryne brassicae (L.) (Homoptera: Aphididae) and their effect on coccinellid predators. Ethiopian Journal of Science, 44(1), 27-37. DOI: https://dx.doi.org/10.4314/sinet.v44i1.3
Soković, M., Glamočlija, J., Marin, P. D., Brkić, D.& Van Griensven, L. J. (2010). Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules, 15(11), 7532-7546. DOI: https://doi.org/10.3390/molecules15117532.
Stark, J. D., & Bank, J. E. (2003). Population-level effects of pesticides and other toxicants on arthropods. Annual Review of Entomology, 48, 505-519. DOI: 10.1146/annurev.ento.48.091801.112621
Stark J. D., & Wennergren U. (1995). Can population effects of pesticides be predicted from demographic toxicological studies? Journal of Economic Entomology, 88, 1089–1096. DOI: https://doi.org/10.1093/jee/88.5.1089
Taheri-Sarhozaki, M., & Safavi, S. A. (2014a). Sub-lethal effects of tiametoxam on life table parameters of the cabbage aphid, Brevicoryne brassicae (L.)(Hemiptera: Aphididae) under laboratory conditions. Archives of Phytopathology and Plant Protection, 47(4), 508-515. DOI: https://doi.org/10.1080/03235408.2013.81314.
Taheri-Sarhozaki, M., & Safavi, S. A. (2014b). Population growth parameters of the cabbage aphid, Brevicoryne brassicae (L.)(Hemiptera: Aphididae), exposed to sublethal doses of thiacloprid. Archives of Phytopathology and Plant Protection, 47(4), 464-471. DOI: https://doi.org/10.1080/03235408.2013.812314.
Thapa, P. & Shrestha, S. (2022). Efficacy of bio-rational pesticides and chemical ‎pesticides against cabbage aphid (Brevicoryne brassicae. L) under laboratory ‎conditions. Nepalese Journal of Agricultural Sciences, 22, 130‎‏-‏‎142‎‏.‏
Zanardi, O. Z., Belegnatte, F., Moresco, C., Zimmermann, H. G., Falchetti, A., & Zanardi A. M. (2024). Toxicity and efficacy of azadirachtin, and oxymatrine-based biopesticides against cabbage aphid and their impacts on predator insects. Crop Protection, 186, 106931. DOI: https://doi.org/10.1016/j.cropro.2024.106931
 © 2025 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/.