شناسایی عامل شانکر باکتریایی مرکبات و کنترل زیستی آن با استفاده از باکتری‌های اپی‌فیت در شرایط گلخانه

نوع مقاله : علمی پژوهشی-فارسی

نویسندگان

1 دانشجوی دکتری،گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

2 استادیار، گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

10.22055/ppr.2025.48548.1780

چکیده

مرکبات در بسیاری از کشورهای جهان نقش مهمی در تولید ثروت و توسعه اقتصادی به عهده دارند. بیماری‌های گوناگون تهدید دائمی برای کشت مرکبات است و می‌توانند باعث کاهش قابل توجه تولید آنها در بسیاری از مناطق در حال رشد جهان شوند. هدف این پژوهش شناسایی باکتری عامل بیماری شانکر مرکبات، جداسازی اپی‌فیت‌های باکتریایی از درختان سالم مرکبات (شمال و جنوب) و بررسی فعالیت آنتاگونیستی آن‌ها علیه عامل شانکر مرکبات در شرایط آزمایشگاه و گلخانه بود. براساس شناسایی مولکولی با توالی‌های نوکلئوتیدی ژن 16S rRNA جدایه بیمارگر بیشترین شباهت را با سویه H68 ازگونه Pantoea agglomerans نشان داد. جدایه‌های اپی‌فیت از 100 نمونه شاخه، برگ و میوه‌های درختان مرکبات (استان‌های مازندران، گیلان، خوزستان و کرمان) روی محیط کشت اگار غذایی جداسازی شدند. از 311 جدایه باکتریایی اپی‌فیت، تعداد 82 جدایه که در آزمون‌های فوق حساسیت روی برگ توتون و شمعدانی و لهانیدن ورقه‌های سیب‌زمینی منفی بودند برای بررسی فعالیت آنتاگونیستی انتخاب شدند. در شرایط آزمایشگاه با روش کشت همزمان، 31 جدایه اپی‌فیت علیه جدایه بیمارگر هاله بازدارندگی ایجاد کردند که بیشترین قطر هاله بازدارندگی مربوط به جدایه 45 با پنج میلی‌متر بود. فعالیت آنتاگونیستی در شرایط گلخانه روی برگ نهال‌های دو ساله رقم مکزیکن لایم با 13 جدایه منتخب نشان داد که اثر تیمارها در کاهش گسترش علائم بیماری در سطح یک درصد معنی‌دار بود و جدایه 22 با سطح آلودگی 84/9 درصد نسبت به شاهد مثبت، بیشترین اثر را در کاهش گسترش علائم داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification of the causal agent of citrus bacterial canker and its biocontrol using epiphytic bacteria under greenhouse conditions

نویسندگان [English]

  • K. Hasani 1
  • F. Shahryari 2
  • Ashkan Aali Mohammadi 1
1 Ph.D. student, Department of Plant Protection, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
2 Assistant Professor, Department of Plant Protection, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
چکیده [English]

Abstract

Background and Objectives

Citrus is important for wealth generation and economic development in many countries worldwide. It is a subtropical fruit mainly originating in India, Iran, China, Japan, and some Southeast Asian countries. The bacterial canker is one of the most destructive citrus diseases that affects all citrus varieties and causes massive financial losses to the citrus industry worldwide, either in terms of a decrease in the quantity and quality of fruit production, reduced access to export markets, or the expenses associated with the prevention and control of the disease. Canker lesions begin as light yellow, raised, spongy blister-like formations on the leaves, twigs, and fruit surface. As the lesions enlarge, the spongy formations collapse, and brown depressions appear in their central portion, forming a crater-like appearance. This research aimed to identify the causal agent of citrus canker, isolate bacterial epiphytes from citrus trees (northern and southern regions), and examine their antagonistic activity against the pathogenic isolate under laboratory and greenhouse conditions.

Materials and Methods

In this study, epiphytic bacterial isolates from 100 samples of branch, leaf, and fruit of various citrus trees (orange, lemon, lime, etc.) obtained from Mazandaran, Gilan, Khuzestan, and Kerman provinces were isolated on a nutrient agar culture medium. Moreover, the pathogenic strain CC29 was isolated from infected Lime trees and identified based on phenotypic features, and a pathogenicity test was prepared by the Department of Plant Protection, Faculty of Agriculture of the University of Zanjan. The antagonistic activity of the epiphytic isolates against the pathogenic strain CC29 was measured by co-inoculation method under in vitro conditions. Antagonist isolates were selected and identified based on physiological and biochemical tests. In greenhouse experiments, the selected antagonistic epiphyte isolates were inoculated in the leaves of two-year-old seedlings of the Mexican lime cultivar two days before pathogen inoculation. The seedlings were kept in a greenhouse at 25◦C to 27◦C and 55 % to 60 % relative humidity. After one month, the disease severity was calculated using Motic Images Advanced 3.2 software. This experiment was conducted in a completely randomized statistical design in four repetitions. Data analysis was performed using SAS version 9.4 software.

Results

In this study, molecular identification based on the partial 16S rRNA gene nucleotide sequences, the pathogenic isolate showed the highest similarity to the type strain Pantoea agglomerans strain H68. In the antagonistic activity tests, Out of 311 isolates, 82 isolates were selected based on negative results in the hypersensitivity reaction on tobacco and geranium leaves and soft rot on potato slices. In in vitro conditions, 32 isolates showed an inhibition zone against Pantoea agglomerans strain CC29, with the largest inhibition zone diameter being five millimeters for isolate 45. In the greenhouse condition, the antagonistic activity of 13 selected epiphyte isolates against strain CC29 was investigated in the leaf tissue. The variance analysis of data showed that the effects of treatments on the reduction of symptom severity were significant at the 1 % level. The epiphytic isolate 22 reduced the disease severity compared to the positive control and had the greatest effect in reducing the spread of symptoms. These isolates belong to the genus Pseudomonas sp. based on phenotypic characteristics.

Discussion

This study demonstrated that Pantoa agglomerance has the potential to play diverse roles in interactions with plants, as previous studies have shown. The strains of this species have the potential to act as a causal agent of disease in one host and as a biological control agent in others. Because this species is used as a biological control agent for fungal and bacterial plant pathogens, it is essential to be aware of its pathogenic potential to prevent undesirable or dangerous effects. Although the antagonistic activity of bacterial isolates in vitro conditions is acceptable. However, the results may differ in vivo conditions due to the unpredictable behavior of antagonistic organisms in different conditions. According to the results, it would be beneficial to investigate the interaction between Pantoea agglomerans strain CC29 identified in this study and Xanthomonas citri subsp. citri.

کلیدواژه‌ها [English]

  • Antagonistic activity
  • Limequat
  • Mexican Limes
  • Pantoea agglomerans
  • Pathogenicity
References
Alizadeh, A., & Rahimian, H. (1990). Citrus canker in Kerman province. Iranian Journal of Plant Pathology, 26, 42. https://www.cabidigitallibrary.org/doi/full/10.5555/19922317497
Al-Saleh, M. A. (2014). Evaluation of Saudi fluorescent pseudomonads isolate as a biocontrol agent against citrus canker disease caused by Xanthomonas citri subsp citri A. Egyptian Academic Journal of Biological Sciences, G. Microbiology, 6(2), 1-7. https://www.doi.org/10.21608/eajbsg.2014.16493
Alvani, S., Rouhani H., & Mahdikhani Moghadam, E. (2011). Relationship between hydrogen cyanide and siderophore production by fluorescent pseudomonads of wheat rhizosphere with growth rate of the plant. Iranian Journal of Plant Protection Science, 43(1), 1-12 (In Farsi with English summary). doi: 10.22059/ijpps.2012.28640
Ardestani, M. (2014). Analysis of the citrus market in the world and Iran. Researches on Planning, Agricultural Economics and Rural Development, 23p. (In Farsi).
Buonaurio, R., Moretti, C., da Silva, D. P., Cortese, C., Ramos, C., & Venturi, V. (2015). The olive knot disease as a model to study the role of interspecies bacterial communities in plant disease. Frontiers in Plant Science, 6, 434. doi: 10.3389/fpls.2015.00434
CABI. (2022). Wallingford, UK: CAB International.https://www.cabi.org/isc/datasheet/56921
Dhanasekaran, D., Rajakumar, G., Sivamani, P., Selvamani, S., Panneerselvam, A., & Thajuddin, N. (2005). Screening of salt pans actinomycetes for antibacterial agents. The Internet Journal of Microbiology, 1(2), 6-12. https://doi.org/10.5580/1bcc
Dutkiewicz, J., Mackiewicz, B., Lemieszek, M., Golec, M. & Milanowski, J. (2016). Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects. Annals of Agricultural and Environmental Medicine, 23(2), 206–222. doi: 10.5604/12321966.1203879
Fahy, P. C., & Persely G. J. (1983). Plant bacteria diseases: Adiagnostic guide. Academic
Press, Sydney, Asturalia
, p, 378. https://doi.org/10.1007/bf03212583
Ference, C. M., Gochez, A. M., Behlau, F., Wang, N., Graham, J. H., & Jones, J. B. (2018). Recent advances in the understanding of Xanthomonas citri ssp. citri pathogenesis and citrus canker disease management. Molecular Plant Pathology, 19(6), 1302-1318. doi: 10.1111/mpp.12638
Glynn, b. (2015). Citrus cultivars and bases suitable for Iran. 9th Congress of Horticultural Sciences of Iran, Ahvaz. https://civilica.com/doc/724904 (In Farsi with English summary).
Islam, M. N., Ali, M. S., Choi, S. J., Hyun, J. W., &. Baek, K. H. (2019). "Biocontrol of citrus canker disease caused by Xanthomonas citri subsp. citri using an endophytic Bacillus thuringiensis." The Plant Pathology Journal, 35(5), 486-497. doi: 10.5423/PPJ.OA.03.2019.0060
Khodakarmian, G. (2004). Characterization of fluorescent pseudomonads isolated from citus phylosphere in southern Iran and evaluation of their antagonistic activity against bacterial inducing citrus canker disease. Iranian Journal of Agricultural Sciences, 35(4), 919-911 (In Farsi with English summary). https://www.cabidigitallibrary.org/doi/full/10.5555/20053120558
Kumar, S., Stecher, G., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549. doi:10.1093/molbev/msy096
Lozano, J. C., & Sequeira, L. (1970). Differentiation of races of Pseudomonas solanacearum by a leaf infiltration technique. Phytopathology, 60, 833-38. https://doi.org/10.1094/phyto-60-833
Montakhabi, M., Rahimian, H., Falahati Rastgar, M., & Jafarpour, B. (2010). Investigating the possibility of using citrus epiphyte bacteria against citrus canker disease caused by Xanthomonas axonpodis pv. citri in laboratory conditions." Plant Protection, 24(4), 376-368. (In Farsi) doi: 10.22067/jpp.v24i4.8117
Poveda, J., Roeschlin, R. A., Marano, M. R., & Favaro, M. A. (2021). Microorganisms as biocontrol agents against bacterial citrus diseases. Biological Control, 158, 1-10. https://doi.org/10.1016/j.biocontrol.2021.104602
Schaad, N. W., Jones, J. B., & Chun, W. (2001). Laboratory guide for the identification of plant pathogenic bacteria. American Phytopathological Society, APS Press, 373p. https://doi.org/10.1046/j.1365-3059.2001.00635.x
Schlechter, R. O., Miebach, M., & Remus-Emsermann, M. N. (2019). Driving factors of epiphytic bacterial communities: a review. Journal of Advanced Research, 19, 57-65. https://doi.org/10.1016/j.jare.2019.03.003
Seidipoor, E., Samadzadegan, F., Dadras Javan, F., & Askari, O. (2018). Diagnosis declines in citrus using multispectral camera-equipped unmanned aerial system. Engineering Journal of Geospatial Information Technology, 6(3), 31-49, URL: http://jgit.kntu.ac.ir/article-1-616-fa.html  (In Farsi with English summary). doi: 10.29252/jgit.6.3.39
Shahryari, F., Khodakaramian, G., & Heydari, A. (2005). Assessment of antagonistic activity of Pseudomonas fluorescens biovars toward Pectobacterium carotovorum subsp. atrosepticum. Journal of Water and Soil Science, 8(4), 201-211 URL:http://jstnar.iut.ac.ir/article-1-314-fa.html (In Farsi). dor: 20.1001.1.22518517.1383.8.4.18.0
Sherafati, F., Khodaygan, P., Azadvar, M., Sedaghati, E., Saberi-Riseh, R. & Baghaee-Ravari, S., (2014). Association of Pantoea agglomerans with the citrus bacterial canker disease in Iran. Journal of Crop Protection, 3(3), 345-355. dor: 20.1001.1.22519041.2014.3.3.10.9
Sherafati, F., Khodaygan, P., Azadvar, M., Sedaghati, E., Saberi-Riseh, R., & Nourollahi kh. (2013). Identification and comparative investigation into causal agent of citrus bacterial canker in Ilam province. Plant Protection (Scientific Journal of Agriculture), 36(4), 11-23. (In Farsi with English summary). dor: 20.1001.1.22519041.2014.3.3.10.9
Spicer, M. E., & Woods, C. L. (2022). A case for studying biotic interactions in epiphyte ecology and evolution. Perspectives in Plant Ecology, Evolution and Systematics, 54,1-93. https://doi.org/10.1016/j.ppees.2021.125658
Suslow, T. V., Schroth, M. N., & Isaka, M. (1982). Application of a rapid method for gram differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology, 72, 917-918. https://doi.org/10.1094/phyto-72-917
Zamorano, A., Zuñiga, T., Córdova, P., Higuera, G., Bertaccini, A., & Fiore, N. (2022). Pantoea agglomerans-induced dieback in pistachio in Chile. Horticulturae, 8(11), 1-12. https://doi.org/10.3390/horticulturae8111052
Zia Ur Rehman, M., Ahmed, F., Attique Khan, M., Tariq, U., Shaukat Jamal, S., Ahmad, J., & Hussain, I. (2021). Classification of citrus plant diseases using deep transfer learning. Computers, Materials & Continua, 70(1), 1401-1417. https://doi.org/10.32604/cmc.2022.019046
 © 2025 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/.