References
Ahmed, S. B., Mohamed, H. I., Al-Subaie, A. M., Al-Ohali, A. I., & Mahmoud, N. M. (2021). Investigation of the antimicrobial activity and hematological pattern of nano-chitosan and its nano-copper composite.
Scientific Reports, 11(1), 9540.
https://doi.org/10.1038/s41598-021-88907-z
Akdaşçi, E., Duman, H., Eker, F., Bechelany, M., & Karav, S. (2025). Chitosan and Its Nanoparticles: A Multifaceted Approach to Antibacterial Applications.
Nanomaterials, 15(2), 126.
https://doi.org/10.3390/nano15020126
Aydın, S., Başaran, A. A., & Başaran, N. (2005). Modulating effects of thyme and its major ingredients on oxidative DNA damage in human lymphocytes.
Journal of Agricultural and Food Chemistry, 53(4), 1299-1305.
https://doi.org/10.1021/jf0402375
Barros, F. A., Radünz, M., Scariot, M. A., Camargo, T. M., Nunes, C. F., de Souza, R. R., et al. (2022). Efficacy of encapsulated and non-encapsulated thyme essential oil (
Thymus vulgaris L.) in the control of
Sitophilus zeamais and its effects on the quality of corn grains throughout storage.
Crop Protection, 153, 105885.
https://doi.org/10.1016/j.cropro.2021.105885
Choudhary, M. K., Swati, & Saharan, V. (2017). Synthesis, characterization and evaluation of physico-chemical profile of Cu-Chitosan Nanocomposite. International Journal of Chemical Studies, 5(4), 1489-1494.
Choudhary, R. C., Kumaraswamy, R., Kumari, S., Sharma, S., Pal, A., Raliya, R., et al. (2017). Cu-chitosan nanoparticle boost defense responses and plant growth in maize (
Zea mays L.).
Scientific Reports, 7(1), 9754.
https://doi.org/10.1038/s41598-017-08571-0
Córdova, P., Rivera-González, J. P., Rojas-Martínez, V., Fiore, N., Bastías, R., Zamorano, A., et al. (2023). Phytopathogenic
Pseudomonas syringae as a threat to agriculture: perspectives of a promising biological control using bacteriophages and microorganisms.
Horticulturae, 9(6), 712.
https://doi.org/10.3390/horticulturae9060712
Cruz-Luna, A. R., Cruz-Martínez, H., Vásquez-López, A., & Medina, D. I. (2021). Metal nanoparticles as novel antifungal agents for sustainable agriculture: Current advances and future directions.
Journal of Fungi, 7(12), 1033.
https://doi.org/10.3390/jof7121033
dos Santos, O. A. L., dos Santos, M. S., Antunes Filho, S., & Backx, B. P. (2024). Nanotechnology for the control of plant pathogens and pests.
Plant Nano Biology, 100080.
https://doi.org/10.1016/j.plana.2024.100080
Gaysinsky, S., Davidson, P. M., McClements, D. J., & Weiss, J. (2008). Formulation and characterization of phytophenol-carrying antimicrobial microemulsions.
Food Biophysics, 3, 54-65.
https://doi.org/10.1007/s11483-007-9048-1
Goharrostami, M., Sendi, J. J., Hosseini, R., & Mahmoodi, N. O. A. (2022). Effect of thyme essential oil and its two components on toxicity and some physiological parameters in mulberry pyralid Glyphodes pyloalis Walker.
Pesticide Biochemistry and Physiology, 188, 105220.
https://doi.org/10.1016/j.pestbp.2022.105220
Gomes, D. G., Sanada, K., Pieretti, J. C., Shigueoka, L. H., Sera, G. H., Seabra, A. B., & Oliveira, H. C. (2023). Nanoencapsulation boosts the copper-induced defense responses of a susceptible
Coffea arabica cultivar against
Hemileia vastatrix.
Antibiotics, 12(2), 249.
https://doi.org/10.3390/antibiotics12020249
Granata, G., Stracquadanio, S., Leonardi, M., Napoli, E., Malandrino, G., Cafiso, V., et al. (2021). Oregano and thyme essential oils encapsulated in chitosan nanoparticles as effective antimicrobial agents against foodborne pathogens.
Molecules, 26(13), 4055.
https://doi.org/10.3390/molecules26134055
Gritsch, L., Lovell, C., Goldmann, W. H., & Boccaccini, A. R. (2018). Fabrication and characterization of copper (II)-chitosan complexes as antibiotic-free antibacterial biomaterial.
Carbohydrate Polymers, 179, 370-378.
https://doi.org/10.1016/j.carbpol.2017.09.095
Hoang, N. H., Le Thanh, T., Sangpueak, R., Treekoon, J., Saengchan, C., Thepbandit, W., et al. (2022). Chitosan nanoparticles-based ionic gelation method: a promising candidate for plant disease management.
Polymers, 14(4), 662.
https://doi.org/10.3390/polym14040662
Kim, S.-K. (2010). Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications: CRC Press.
Lamichhane, J. R., Osdaghi, E., Behlau, F., Köhl, J., Jones, J. B., & Aubertot, J.-N. (2018). Thirteen decades of antimicrobial copper compounds applied in agriculture. A review.
Agronomy for Sustainable Development, 38(3), 28.
https://doi.org/10.1007/s13593-018-0503-9
Manikandan, A., & Sathiyabama, M. (2015). Green synthesis of copper-chitosan nanoparticles and study of its antibacterial activity.
Journal of Nanomedicine and Nanotechnology, 6(1), 1.
https://doi.org/10.4172/2157-7439.1000251
Mekahlia, S., & Bouzid, B. (2009). Chitosan-Copper (II) complex as antibacterial agent: synthesis, characterization and coordinating bond-activity correlation study.
Physics Procedia, 2(3), 1045-1053.
https://doi.org/10.1016/j.phpro.2009.11.061
Morales, R. (2002). The history, botany and taxonomy of the genus Thymus. In Thyme (pp. 15-57): CRC Press.
Omar, H. S., Al Mutery, A., Osman, N. H., Reyad, N. E.-H. A., & Abou-Zeid, M. A. (2021). Genetic diversity, antifungal evaluation and molecular docking studies of Cu-chitosan nanoparticles as prospective stem rust inhibitor candidates among some Egyptian wheat genotypes.
PLoS One, 16(11), e0257959.
https://doi.org/10.1371/journal.pone.0257959
Qu, J., Hu, Q., Shen, K., Zhang, K., Li, Y., Li, H., et al. (2011). The preparation and characterization of chitosan rods modified with Fe3+ by a chelation mechanism.
Carbohydrate Research, 346(6), 822-827.
https://doi.org/10.1016/j.carres.2011.02.006
Saharan, V., Mehrotra, A., Khatik, R., Rawal, P., Sharma, S., & Pal, A. (2013). Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi.
International Journal of Biological Macromolecules, 62, 677-683.
https://doi.org/10.1016/j.ijbiomac.2013.10.012
Saharan, V., Sharma, G., Yadav, M., Choudhary, M. K., Sharma, S., Pal, A., et al. (2015). Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato.
International Journal of Biological Macromolecules, 75, 346-353.
https://doi.org/10.1016/j.ijbiomac.2015.01.027
Scortichini, M., Marcelletti, S., Ferrante, P., Petriccione, M., & Firrao, G. (2012).
Pseudomonas syringae pv.
actinidiae: a re‐emerging, multi‐faceted, pandemic pathogen.
Molecular Plant Pathology, 13(7), 631-640.
https://doi.org/10.1111/j.1364-3703.2012.00788.x
Shahryari, F., Rabiei, Z., & Sadighian, S. (2020). Antibacterial activity of synthesized silver nanoparticles by sumac aqueous extract and silver-chitosan nanocomposite against
Pseudomonas syringae pv.
syringae.
Journal of Plant Pathology, 102, 469-475.
https://doi.org/10.1007/s42161-019-00478-1
Sun, S., Zhi, Y., Zhu, Z., Jin, J., Duan, C., Wu, X., & Xiaoming, W. (2017). An emerging disease caused by
Pseudomonas syringae pv.
phaseolicola threatens mung bean production in China.
Plant Disease, 101(1), 95-102.
https://doi.org/10.1094/PDIS-04-16-0448-RE
Tabesh, E., Salimijazi, H., Kharaziha, M., Mahmoudi, M., & Hejazi, M. (2019). Development of an in-situ chitosan‑copper nanoparticle coating by electrophoretic deposition.
Surface and Coatings Technology, 364, 239-247.
https://doi.org/10.1016/j.surfcoat.2019.02.040
Tantubay, S., Mukhopadhyay, S. K., Kalita, H., Konar, S., Dey, S., Pathak, A., & Pramanik, P. (2015). Carboxymethylated chitosan-stabilized copper nanoparticles: a promise to contribute a potent antifungal and antibacterial agent.
Journal of Nanoparticle Research, 17, 1-18.
https://doi.org/10.1007/s11051-015-3047-9
Tao, F., Hill, L. E., Peng, Y., & Gomes, C. L. (2014). Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications.
LWT-Food Science and Technology, 59(1), 247-255.
https://doi.org/10.1016/j.lwt.2014.05.037
Ündeğer, Ü., Başaran, A., Degen, G., & Başaran, N. (2009). Antioxidant activities of major thyme ingredients and lack of (oxidative) DNA damage in V79 Chinese hamster lung fibroblast cells at low levels of carvacrol and thymol.
Food and Chemical Toxicology, 47(8), 2037-2043.
https://doi.org/10.1016/j.fct.2009.05.020
Vanti, G. L., Masaphy, S., Kurjogi, M., Chakrasali, S., & Nargund, V. B. (2020). Synthesis and application of chitosan-copper nanoparticles on damping off causing plant pathogenic fungi.
International Journal of Biological Macromolecules, 156, 1387-1395.
https://doi.org/10.1016/j.ijbiomac.2019.11.179
Varympopi, A., Dimopoulou, A., Theologidis, I., Karamanidou, T., Kaldeli Kerou, A., Vlachou, A., et al. (2020). Bactericides based on copper nanoparticles restrain growth of important plant pathogens.
Pathogens, 9(12), 1024.
https://doi.org/10.3390/pathogens9121024
Yu, Y., Liu, H., Xia, H., & Chu, Z. (2023). Double-or triple-tiered protection: prospects for the sustainable application of copper-based antimicrobial compounds for another fourteen decades.
International Journal of Molecular Sciences, 24(13), 10893.
https://doi.org/10.3390/ijms241310893
© 2025 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (
http://creativecommons.org/licenses/by-nc/4.0/.