Abassi, S., Safaie, N., Shamsbakhsh, M., & Shahbazi, S. (2014). Evaluation of antagonistic properties of Trichoderma harzianum mutants against some plant pathogenic fungi in vitro. Plant Protection Scientific Journal of Agriculture, 37(4), 91-102.
Akter, S., Kadir, J., Juraimi, A.S., Saud, H.M. & Elmahdi, S. (2014). Isolation & identification of antagonistic bacteria from phylloplane of rice as biocontrol agents for sheath blight. Journal of Environmental Biology, 35(6), 1095–1100.
Arwiyanto, T. (2014). Biological control of plant disease caused by bacteria. Jurnal Perlindungan Tanaman Indonesia, 18(1), 1-12.
Bedine Boat, M. A., Sameza, M. L., Iacomi, B., Tchameni, S. N., & Boyom, F. F. (2020). Screening, identification and evaluation of Trichoderma spp. for biocontrol potential of common bean damping-off pathogens. Biocontrol Science and Technology, 30(3), 228-242.
Belete, T., Bastas, K. K., Francesconi, S., & Balestra, G. M. (2021). Biological effectiveness of Bacillus subtilis on common bean bacterial blight. Journal of Plant Pathology, 103, 249-258.
Cochard, B., Giroud, B., Crovadore, J., Chablais, R., Arminjon, L., Lefort, F. (2022). Endophytic PGPR from tomato roots: isolation, in vitro characterization & in vivo evaluation of treated tomatoes (Solanum lycopersicum L.). Microorganisms, 10(4), 765.
Commare, R. R., Nandakumar, R., Kandan, A., Suresh, S., Bharathi, M., Raguchander, T., & Samiyappan, R. (2002). Pseudomonas fluorescens based bio-formulation for the management of sheath blight disease and leaffolder insect in rice. Crop Protection, 21(8), 671-677.
Corrêa, B. O., Schafer, J. T., Moura, A. B. (2014). Spectrum of biocontrol bacteria to control leaf root & vascular diseases of dry bean. Biological Control, 72, 71–75.
Das, M. M., Aguilar, C. N., Haridas, M., & Sabu, A. (2021). Production of bio-fungicide, Trichoderma harzianum CH1 under solid-state fermentation using coffee husk. Bioresource Technology Reports, 15, 100708.
Dhanya, M. K., & Mary, C. A. (2007). Management of bacterial blight of anthurium (Anthurium andreanum Linden.) using ecofriendly materials. Journal of Tropical Agriculture, 44, 74-75.
Dönmez, M. F., & Aliyeva, Z. (2023). Biological Control of Bean Halo Blight Disease (Pseudomonas savastanoi Pv. phaseolicola) with Antagonist Bacterial Strains. Gesunde Pflanzen, 75(4), 815-824.
Druzhinina, I. S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B. A., Kenerley, C. M., Monte, E., & Kubicek, C. P. (2011). Trichoderma: the genomics of opportunistic success. Nature reviews microbiology, 9(10), 749-759.
Esmaili, M., & Maarefat, A. (2015). Identification of soil inhabiting bacteria in Qazvin province vineyards and investigation of their inhibitory effect on Rhizobium vitis, the causal agent of grape root and crown gall. Plant Protection Scientific Journal of Agriculture, 38(1), 79-90.
Hsieh, T. F., Huang, H. C., & Erickson, R. S. (2005). Biological control of bacterial wilt of bean using a bacterial endophyte, Pantoea agglomerans. Journal of Phytopathology, 153(10), 608-614.
Huang, H. C., Erickson, R. S., & Hsieh, T. F. (2007). Control of bacterial wilt of bean (Curtobacterium flaccumfaciens pv. flaccumfaciens) by seed treatment with Rhizobium leguminosarum. Crop Protection, 26(7), 1055-1061.
Kalita, P., Bora, L. C., & Bhagabati, K. N. (1996). Phylloplane microflora of citrus and their role in management of citrus canker. Indian Phytopathology, 49(3), 234-237.
Kamel, S. M., Farag, F. M., Arafa, R. A., & Essa, T. A. (2020). Biocontrol potentials of Trichoderma spp. against Sclerotium rolfsii the causative of root and crown rot in tomato, common bean and cabbage. Egyptian Journal of Phytopathology, 48(1), 122-136.
Karimi, E., Safaie, N., Shamsbakhsh, M., & Mahmoodi, S. B. (2015). Control of Seedling Damping-off Disease on Sugarbeet Caused by Rhizoctonia solani AG-2-2 by Endophytic Fungi and Resistance Inducer Compounds as Seed Treatment. Plant Protection Scientific Journal of Agriculture, 38(4), 33-52.
Ketta, H. A., & Hewedy, O. A. E. R. (2021). Biological control of Phaseolus vulgaris and Pisum sativum root rot disease using Trichoderma species. Egyptian Journal of Biological Pest Control, 31, 1-9.
Khavari, H., & Shakarami, G. (2020). Response of yield and yield components of six genotypes of Pinto beans (Phaseolus vulgaris L.) inoculation with Rhizobium phaseoli. Iranian Journal Pulses Research, 10(2), 132-148.
Manoj, S. R., Karthik, C., Kadirvelu, K., Arulselvi, P. I., Shanmugasundaram, T., Bruno, B., & Rajkumar, M. (2020). Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. Journal of environmental management, 254, 109779.
Martins, S. J., de Medeiros, F. H. V., de Souza, R. M., de Resende, M. L. V., & Junior, P. M. R. (2013). Biological control of bacterial wilt of common bean by plant growth-promoting rhizobacteria. Biological Control, 66(1), 65-71.
Mirzaei Najafgholi, H., Narimani, S., Aeini, M., Taghavi, S. M., Tarighi, S., & Javaheri, M. (2015). Investigation the performance and biological control of the various tomato cultivars against the bacterial wilt disease (Ralstonia solanacearum). Biocontrol in Plant Protection, 2(2), 47-57.
Mokrani, S., Rai, A., Belabid, L., Cherif, A., Cherif, H., Mahjoubi, M., & Nabti, E. (2019). Pseudomonas diversity in western Algeria: role in the stimulation of bean germination and common bean blight biocontrol. European Journal of Plant Pathology, 153, 397-415.
Munene, L. W. (2023). Bacterial biological control agents in the management of bacterial wilt (curtobacterium Flaccumfaciens PV. Flaccumfaciens) in the common bean (Doctoral dissertation, UoEm).
Munene, L., Mugweru, J., & Mwirichia, R. (2023). Management of bacterial wilt caused by Curtobacterium flaccumfaciens pv. flaccumfaciens in common bean (Phaseolus vulgaris) using rhizobacterial biocontrol agents. Letters in Applied Microbiology, 76(1), ovac011.
Nagarajkumar, M., Bhaskaran, R. & Velazhahan, R. (2004). Involvement of secondary metabolites & extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiological Research, 159(1), 73–81.
Nazvar, A., Mamarabadi, M., & Taheri, P. (2021). Biological control of sesame Fusarium wilt using Trichoderma harzianum in Khorasan Razavi province under in vitro and in vivo conditions. Plant Protection Scientific Journal of Agriculture, 44(3), 11-28.
Nguyen, M. T., & Ranamukhaarachchi, S. L. (2010). Soil-borne antagonists for biological control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. Journal of Plant Pathology, 395-405.
Nur Mawaddah, S., AW, M. Z., & Sapak, Z. (2023). The potential of Pseudomonas fluorescens as biological control agent against sheath blight disease in rice: a systematic review. Food Research, 7(2), 46-56.
Nurfalah, A., Ayuningrum, N., Affandi, M. R., & Hastuti, L. D. S. (2019, July). Promoting growth of tomato (Solanum lycopersicum L.) by using trichoderma–compost–rice bran based biofertilizer. In IOP Conference Series: Earth and Environmental Science (Vol. 305, No. 1, p. 012074). IOP Publishing.
Osdaghi, E., Young, A. J., & Harveson, R. M. (2020). Bacterial wilt of dry beans caused by Curtobacterium flaccumfaciens pv. flaccumfaciens: A new threat from an old enemy. Molecular plant pathology, 21(5), 605-621.
Pandey, D. K., Tripathi, N. N., Tripathi, R. D., & Dixit, S. N. (1982). Fungitoxic and phytotoxic properties of the essential oil of Hyptis suaveolens/Fungitoxische und phytotoxische Eigenschaften des ätherischen Öis von Hyptis suaveolens. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection, 344-349.
Paulitz, T. C., & Bélanger, R. R. (2001). Biological control in greenhouse systems. Annual review of phytopathology, 39(1), 103-133.
Reino, J. L., Guerrero, R. F., Hernández-Galán, R., & Collado, I. G. (2008). Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 7, 89-123.
Sakthivel, N., & Mew, T. W. (1991). Efficacy of bacteriocinogenic strains of Xanthomonas oryzae pv. oryzae on the incidence of bacterial blight disease of rice (Oryza sativa L.). Canadian journal of microbiology, 37(10), 764-768.
Singh, A., Bhardwaj, R., & Singh, I. K. (2019). Biocontrol agents: potential of bio pesticides for integrated pest management. Biofertilizers for sustainable agriculture and environment, 413-433.
Spago, F. R., Mauro, C. I., Oliveira, A. G., Beranger, J. P. O., Cely, M. V. T., Stanganelli, M. M., ... & Andrade, G. (2014). Pseudomonas aeruginosa produces secondary metabolites that have biological activity against plant pathogenic Xanthomonas species. Crop Protection, 62, 46-54.
Tariq, M., Noman, M., Ahmed, T., Hameed, A., Manzoor, N., & Zafar, M. (2017). Antagonistic features displayed by plant growth promoting rhizobacteria (PGPR): a review. J Plant Sci Phytopathol, 1(1), 038-43.
Tegli, S., Biancalani, C., Ignatov, A. N., & Osdaghi, E. (2020). A Powerful LAMP Weapon against the Threat of the Quarantine Plant Pathogen Curtobacterium flaccumfaciens pv. flaccumfaciens. Microorganisms, 8(11), 1705.
Urrea, C. A., & Harveson, R. M. (2014). Identification of sources of bacterial wilt resistance in common bean (Phaseolus vulgaris). Plant Disease, 98(7), 973-976.
Vanneste, J. L. (Ed.). (2000). Fire blight: the disease and its causative agent, Erwinia amylovora. Cabi Publishing.
Wang, J., Andersen, S. U., & Ratet, P. (2018). Molecular and cellular mechanisms of the legume-rhizobia symbiosis. Frontiers in Plant Science, 9, 1839.
Watts, R., Dahiya, J., Chaudhary, K., & Tauro, P. (1988). Isolation and characterization of a new antifungal metabolite of Trichoderma reesei. Plant and Soil, 107, 81-84.
Webster, D. M., Temple, S. R., & Galvez, G. (1983). Expression of resistance to Xanthomonas campestris pv. phaseoli in Phaseolus vulgaris under tropical conditions. Plant Disease, 67(4), 394-396.
Wodzinski, R. S., Umholtz, T. E., Rundle, J. R., & Beer, S. V. (1994). Mechanisms of inhibition of Erwinia amylovora by Erw. herbicola in vitro and in vivo. Journal of Applied Microbiology, 76(1), 22-29.
© 2024 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (
http://creativecommons.org/licenses/by-nc/4.0/.