اثر سمیت سه اسانس گیاهی بر فعالیت‌ آنزیم‌های آنتی‌اکسیدانی لارو سن چهارم بید غلات، Sitotroga cerealella (Oliver)

نوع مقاله : علمی پژوهشی-فارسی

نویسندگان

1 دانشجوی دکتری، گروه گیاه‌پزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه لرستان، خرم آباد، ایران

2 استاد، گروه گیاه‌پزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه لرستان، خرم آباد، ایران

3 دانشیار، گروه علوم پایه، دانشکده دامپزشکی دانشگاه لرستان، خرم آباد، ایران

4 دکتری حشره شناسی، گروه گیاه‌پزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه لرستان، خرم آباد، ایران

چکیده

بید غلات،(Oliver)  Sitotroga cerealella، یکی از مهم‌­ترین آفات با دامنه میزبانی وسیع در ایران و جهان می­‌باشد. در این مطالعه تأثیر اسانس‌­های گیاهی پونه، Mentha longifolia L.، آویشن‌­دنایی، Thymus daenensis Celak و درمنه­‌کوهی، Artemisia aucheri Boiss، از تیره‌­های مختلف در مقایسه با حشره‌­کش ارگانو­فسفره دی­کلرووس (DDVP®) به ‌عنوان شاهد مثبت پس از 24 ساعت، روی فعالیت آنزیم­‌های آنتی­‌اکسیدانی سوپر­اکسید دیسموتاز (SOD)، کاتالاز (CAT) و میزان پراکسیداسیون لیپید لاروهای سن چهارم شب­پره بید غلات بررسی گردید. آزمایش‌­ها در دمای 1±25 درجه سلسیوس، رطوبت نسبی 5±70 درصد و دوره نوری 12 ساعت روشنایی و 12 ساعت تاریکی در شرایط آزمایشگاهی و در قالب طرح کاملا تصادفی و سه تکرار انجام شد. میزان LC50 برای اسانس پونه، آویشن دنایی و درمنه‌کوهی به ترتیب 04/0، 68/0 و47/6 میکرو­لیتر بر لیتر هوا ثبت شد، همچنین بالاترین درصد مرگ­‌و­میر با افزایش غلظت اسانس پونه، آویشن­‌دنایی و درمنه­‌کوهی (09/0، 3 و 9 میکرو­لیتر بر لیتر هوا) به ترتیب 84، 67/80 و 33/77 درصد تعیین شد. با افزایش غلظت اسانس فعالیت آنزیمی افزایش یافت. به‌­طوری­‌که افزایش فعالیت معنی­‌دار CAT، SOD و میزان مالون دی­‌آلدهید (MDA) به عنوان شاخص پراکسیداسیون لیپید در لاروهای تیمار شده با اسانس‌­های پونه، آویشن‏‌دنایی و درمنه­‌کوهی مشاهده شد. به نظر می­‌رسد اسانس‌­های مختلف پونه، آویشن­‌دنایی و درمنه‌­کوهی با اثر بر فعالیت­‌های آنزیمی آنتی‌­اکسیدان لارو سن چهارم بید غلات از طریق اختلال در فرآیند­های فیزیولوژیکی و زنده­‌مانی بتواند در کنترل این آفت در برنامه‌­های مدیریت تلفیقی آفت موثر واقع شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Toxicity of plant essential oils three on physiological activity of fourth instar larvae of Sitotroga cerealella (Oliver)

نویسندگان [English]

  • S. Mahmoudvand 1
  • J. Shakarami 2
  • M. Alirezaei 3
  • Sh. Jafari 2
  • M. Mardani- Talaee 4
1 PhD Student, Agricultural of entomology, Department of Plant Protection, Faculty of Agricultural and Natural Resources, Khorramabad-Lorestan University, Lorestan, Iran
2 Professor, Department of Plant Protection, Faculty of Agricultural and Natural Resources, Khorramabad-Lorestan University, Lorestan, Iran.
3 Associate Professor, Department of Basic Sciences, Faculty of Veterinary Medicine, Khorramabad-Lorestan University, Lorestan, Iran
4 PhD, Department of Plant Protection, Faculty of Agricultural and Natural Resources, Khorramabad-Lorestan University, Lorestan, Iran
چکیده [English]

Background and Objectives
Angoumois grain moth, Sitotroga cerealella, is one of the most critical storage pests with a wide range from the hosts in Iran and worldwide. Excessive consumption of chemical insecticides leads to developing the resistance to chemical insecticides, environmental pollution, and the emergence of new pests. Therefore, we have decided to reduce the risk of the environment in pest’s control via plant essential oils.
Material and Methods
In the current study, to examine the environment- friendly pesticides, effects of three plant essential oils from the families Mentha longifolia L., Thymus daenensis Celak (Lamiaceae), and Artemisia aucheri Boiss (Asteraceae) compared to dichlorvos (DDVP®,as a positive control) an organophosphate insecticide were studied. Antioxidant enzymes, including: superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation marker on the fourth instar larvae of S. cerealella after 24 hours were examined. The essential oils were prepared using the water distillation method. Essential oils were used in five concentrations and three replications. The concentration was selected based on the primary experiment for each essential oil. Insects were exposed to fumigant toxicity of the essential oils and insecticide in laboratory conditions (25±1 °C, 70±5% in 12 hr light/12 hr dark).
Results
The results showed that LC50 for the essential oils of M. longifolia, T. daenensis, and A. aucheri were recorded 0.04, 0.68 and 6.47 μL/Lair, respectively. The highest mortality rate increased with high concentrations (0.09, 3 and 9 μL/Lair) of M. longifolia, T. daenensis and A. aucheri essential oil were 84, 80.67, and 77.33 %, respectively after 24h. Enzymatic activity increased with essential oil high concentrations. Data indicated a significant increase in the activity of catalase, superoxide dismutase enzymes and the concentration of malondialdehyde as peroxidation lipid indicator in treated larvae with essential oils of M. longifolia, T. daenensis and A. aucheri compared with the untreated (negative control), and DDVP® (positive control) on treated 4th instar larvae of S. cerealella after 24h.   
Conclusion
It seems that different essential oils of M. longifolia, T. daenensis and A. aucheri with the effect on the enzymatic activities of antioxidants, including catalase, superoxide dismutase enzymes and malondialdehyde as lipid peroxidation indicator of the fourth instar larvae of S. cerealella via the disruption of physiological processes and survival. Regarding the existence of different aromatic plants in Iran, we can use the species with higher toxicity that would be more economical to produce the botanical insecticides and use in the integrated pest management programs for this pest control.

کلیدواژه‌ها [English]

  • Superoxide dismutase (SOD)
  • Catalase (CAT)
  • Lipid peroxidation
  • MDA
Ahmad, P., Nabi, G., Jeleel, C. A., & Umar, S. (2011). Free radical production, oxidative damage and antioxidant defense mechanisms in plants under abiotic stress. In: Ahmad P, Umar S (eds) Oxidative stress: role of antioxidats in plants. Studium Press, New Delhi, pp 19–53.
Ahmad, S., & Pardini, R. S. (1990). Mechanisms for regulating oxygen toxicity in phytophagous insects. Free Radical Biology and Medicine, 8(4), 401-413. https://doi.org/10.1016/0891-5849(90)90107-T
Alirezaei, M., Jelodar, G., Niknam, P., Ghayemi, Z., & Nazifi, S. (2011). Betain prevent ethanol-induced oxidative stress and reduces total homocysteine in the rat cere bellum. Journal Physiology Biochemstry, 67, 605-612. https://doi.org/ 10.1007/s13105-011-0107-1
Asghari, G., Jalali, M., & Sadoughi, E. (2012). Antimicrobial activity and chemical composition of essential oil from the seeds of Artemisia aucheri Boiss, Jundishapur Journal of Natural Pharmaceutical Products, 7(1), 11-15.  https://doi.org/ 10.17795/jjnpp-3530
Azadbakht, M. (2000). Classifivation of Medicinal Plants, Tabib Publisher. Tehran. 298p.
Barbehenn, R. V., Bumgarner, S. L., Roosen, E. F., & Martin, M. M. (2001). Antioxidant defenses in caterpillars: role of the ascorbate-recycling system in the midgut lumen. Journal of Insect Physiology, 47(4-5), 349-357.‏ https://doi.org/10.1016/S0022-1910(00)00125-6
Belmain, S. R., Neal, G. E., Ray, D. E., & Golop, P. (2001). Insecticidal and vertebrate toxicity associated with ethnobotanicals used as postharvest protectants in Ghana. Food and Chemical Toxicology, 39, 287-291. https://doi.org/10.1016/S0278-6915(00)00134-4
Bhumi, T., Urvi, C. H., & Pragna, P. (2017). Biopesticidal potential of some plant derived essential oils against the stored grain pests. International Journal of Zoological Investigations, 3(2), 188-197.
Chaudhari, A. K., Singh, V. K., Kedia, A., Das, S., & Dubey, N. K. (2021). Essential oils and their bioactive compounds as eco-friendly novel green pesticides for management of storage insect pests: prospects and retrospects. Environmental Science and Pollution Research, 28(15), 18918-18940.‏ https://doi.org/10.1007/s11356-021-12841-w
Chintalchere, J. M., Dar, M. A., Shaha, C., & Pandit, R. S. (2021). Impact of essential oils on Musca domestica larvae: Oxidative stress and antioxidant responses. International Journal of Tropical Insect Science, 41(1), 821-830.‏ https://doi.org/10.1007/s42690-020-00272-y
Chippendale, G. M. (1970). Development of artificial diets for rearing the Angoumois Grain Moth, Journal of Economic Entomology, 63(3), 844-848. https://doi.org/10.1093/jee/63.3.844
Claiborne, A. (1986). Catalase activity. In: Greenwald RA (ed) CRC handbook of methods for oxygen radical research. Vol 1. CRCPress, Boca Raton, Florida, USA.
Dey, D., & Gupta, M. K. (2016). Use of essential oils for insect pest management. Innovative Farming, 1, 21-29. http://www.innovativefarming.in/index.php/IF/article/view/8
Emre, I., Kayis, T., Coskun, M., Dursun, O., & Cogun, H. Y. (2013). Changes in antioxidative enyzme activity, glycogen, lipid, protein, and melondialdehyde content in cadmiumtreated Galleria mellonella larvae. Annals of the Entomological Society America, 106, 371–377. https://doi.org/10.1603/AN12137
Enan, E. (2001). Insecticidal activity of essential oils: octopaminergic sites of action. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 130(3), 325-337.‏ https://doi.org/10.1016/S1532-0456(01)00255-1
Fornazier, R. F., Ferreira, R. R., Pereira, G. J., Molina, S. M., Smith, R. J., Lea, P. J., & Azevedo, R. A. (2002). Cadmium stress in sugar cane callus cultures: effect on antioxidant enzymes. Plant Cell, Tissue and Organ Culture, 71(2), 125-131.‏ https://doi.org/10.1023/A:1019917705111
Fridovich, I. (1999). Fundamental aspects of reactive oxygen species, or what's the matter with oxygen?. Annals of the New York Academy of Sciences, 893(1), 13-18.‏ https://doi.org/ 10.1111/j.1749-6632.1999.tb07814.x
Ghahreman, A. (2000). The colorful flora of Iran. vols. 14-17. Research institute of forests and rangelands, Tehran (In Farsi).
Gönenç, A., Tokgöz, D., Aslan, S., & Torun, M. (2005). Oxidative stress in relation to lipid profiles in different stages of breast cancer. Indian Journal of Biochemistry and Biophysics, 42(3), 190-4. http://nopr.niscair.res.in/handle/123456789/3519
Hasani, J. (2013). Comparison of the quantity and quality of essential oils of Thymus fedtschenkoi Ronniger and Thymus daenensis Celak. In natural habitats of Kurdistan. Journal Ecophytochemical of Medicinal Plants, 1(1), 25-35.
Janero, D.R. (1990). Malondialdehyde and Thiobarbituric Acid-Reactivity as Diagnostic Indices of Lipid Peroxidation and Peroxidative Tissue Injury. Free Radical Biology and Medicine, 9, 515-540. https://doi.org/10.1016/0891-5849(90)90131-2
Kamatou, G. P. P., Vermaak, I., Viljoen, A. M., & Lawrence, B. M. (2013). Menthol: A simple monoterpene with remarkable biological properties. Photochemistry, 96, 15-25. https://doi.org/10.1016/j.phytochem.2013.08.005
Kamkar, A., Shariatifar, N., Jamshidi, A., Jebelli Javan, A., Sadeghi, T., & Zeagham Monfared, M. (2012). In vitro evaluation of antioxidant activity of Iranian Mentha longifolia essential oil and extracts. Journal of Medicinal Plants, 1(41), 185- 194.
Mozafarian, V. (Ed). 2014. A dictionary of Iranian Plant Names. Farhang Moaser.
Kim, J., Seo, S. M., Lee, S. G., Shin, S. C., & Park, I. K. (2008). Nematicidal activity of plant essential oils and components from coriander (Coriandrum sativum), oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) essential oils against Pine Wood Nematode (Bursaphelenchus xylophilus). Journal of Agricaltural Food Chemistry, 56 (16), 7316-7320. https://doi.org/10.1021/jf800780f
Kiran, S., Kujur. A., Patel, L. K., Ramalakshmi, K., & Prakash, B. (2017). Assessment of toxicity and biochemical mechanisms underlying the insecticidal activity of chemically characterized Boswellia carterii essential oils against insect pest of legume seeds. Pesticide Biochemistry and Physiology, 139, 17-23. https://doi.org/10.1016/j.pestbp.2017.04.004
Kolawole, A. O., Olajuyigbe, F. M., Ajele, J. O., & Adedire, C. O. (2014). Activity of the antioxidant defense system in a typical bioinsecticide-and synthetic insecticide-treated cowpea storage beetle Callosobrochus maculatus F. (Coleoptera: Chrysomelidae). International Journal of Insect Science, 6, IJIS-S19434.‏ https://doi.org/10.4137/IJIS.S19434
Kumar, P., Mishra, S., Malik, A., & Satya, S. (2011). Repellency, larvicidal and pupicidal activity of essential oils and their formulation against house fly (Musca domestica L.). Medical and Veterinary Entomology, 25, 302-310. https://doi.org/10.1111/j.1365-2915.2011.00945.x
Leelaja, B. C., & Rajini, P. S. (2012). Impact of phosphine exposure on development in Caenorhabditis elegans: Involvement of oxidative stress and the role of glutathione. Pesticide biochemistry and physiology, 104(1), 38-43.‏ https://doi.org/10.1016/j.pestbp.2012.06.007
Lohar, D. P., Haridas, S., & Gantt, J. S. (2007). A transient decrease in reactive oxygen species in roots leads to root hair deformation in the legume-rhizobia symbiosis. New Phytologist, 173(1), 39-49. https://doi.org/10.1111/j.1469-8137.2006.01901.x
Louni, M., Shakarami, J., & Negahban, M. (2018). Insecticidal efficacy of nanoemulsion containing Mentha longifolia essential oil against Ephestia kuehniella (Lepidoptera: Pyralidae). Journal of Crop Protection, 7(2), 171-182.‏
Lozinskaya, Y. L., Slepneva, I. A., Khramtsov, V. V., & Glupov, V. V. (2004). Changes of the antioxidant status and system of generation of free radicals in hemolymph of Galleria mellonella larvae at microsporidiosis. Journal of Evolutionary Biochemistry and Physiology, 40, 119-125. https://doi.org/10.1023/B:JOEY.0000033802.97996.65
Lukasik, I. (2007). Changes in activity of superoxide dismutase and catalase within cereal aphids in response to plant odihydroxyphenols. Journal of applied entomology, 131(3), 209-214. https://doi.org/10.1111/j.1439-0418.2006.01136.x
Mahmoudvand, S., & Shakermi, J., and Vafaei Shoushtari, R. (2014). Fumigant toxicity of four plant essential oils on adult flies insects. Journal of Entomological Research, 6 (4), 367-378. (In Farsi)
Meagher, E. A., & Fitz Gerald, G. A. (2000). Indices of lipid peroxidation in vivo: strengths and limitations. Free Radical Biology and Medicine, 28, 1745-1750. https://doi.org/10.1016/S0891-5849(00)00232-X
Migula, P., Laszczyca, P., Augustyniak, M., Wilczek, G., Rozpedek, K., Kafel, A., & Woloszyn, M. (2004). Antioxidative defense enzymes in beetles from a metal pollution gradient. Biologia (Bratislava), 59, 645–654.
Mirzaeian, S., Oraie, M., & Ghasemi Pirbalouti, A. (2014). Phytochemistry of essential oil from different parts of Artemisia aucheri Boiss collected from Chaharmahal va Bakhtiari province, Iran. Journal of Medicinal Herbs, 4(4), 189-192. (In Persian)
Mirzashahi, K., & Salimpour, S. (2010). What is safe product? Journal of products safe Gateway of organic farming, 340(1): 1-12. (In Farsi).
Moazeni, N., Khajeali, J., Izadi, H., & Mahdian, K. (2013). Chemicalcomposition and bioactivity of Thymus daenensis Celak (Lamiaceae) essential oil against two lepidopteran stored- productinsects, Journal of Essential Oil Research, https://doi.org/10.1080/10412905.2013.860412
Momen, F. M., Abdelkader, M. M., & Fahim, S. F. (2018). Composition, repellent and fumigant toxicity of Mentha longifolia essential oil on Tetranychus urticae and three predatory mites of the family phytoseiidae (Acari: Tetranychidae: Phytoseiidae). Acta Phytopathologica et Entomologica Hungarica Acta Phytopathologica et Entomologica Hungarica, 53(2), 221-232. https://doi.org/10.1556/038.53.2018.007
Mostafalou, S., & Abdollahi, M. (2013). Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicology and Applied Pharmacology, 268(2), 157-77. https://doi.org 10.1016/j.taap.2013.01.025.
Naseri, B., Abedi, Z., Abdolmaleki, A., Jafary-Jahed, M., Borzoui, E., & Mozaffar Mansouri, S. (2017). Fumigant Toxicity and Sublethal Effects of Artemisia khorassanica and Artemisia sieberi on Sitotroga cerealella (Lepidoptera: Gelechiidae). Journal of insect science (Online), 17(5), 100. https://doi.org/10.1093/jisesa/iex073
Ni, Z. J., Wang, X., Shen, Y., Thakur, K., Han, J., Zhang, J. G., & Wei, Z. J. (2021). Recent updates on the chemistry, bioactivities, mode of action, and industrial applications of plant essential oils. Trends in Food Science & Technology, 110, 78-89.‏ https://doi.org/10.1016/j.tifs.2021.01.070
Orčić, S., Nikolić, T., Purać, J., Šikoparija, B., Blagojević, D. P., Vukašinović, E., & Kojić, D. (2017). Seasonal variation in the activity of selected antioxidant enzymes and malondialdehyde level in worker honey bees. Entomologia Experimentalis et Applicata, 165(2-3), 120-128.‏ https://doi.org/10.1111/eea.12633
Pavela, R. (2018). Essential oils from Foeniculum vulgare Miller as a safe environmental insecticide against the aphid Myzus persicae Sulzer. Environmental science and pollution
research
, 25 (11), 10904-10910. https://doi.org/ 10.1007/s11356-018-1398-3
Pritsos, C. A., Ahmad, S., Bowen, S. M., Elliott, A. J., Blomquist, G. J., & Pardini, R. S. (1988). Antioxidant enzymes of the black swallowtail butterfly, Pupitio polyxenes, and their response to the prooxidant allelochemical, quercetin. Archives of Insect Biochemistry and Physiology, l8, 101. https://doi.org/10.1002/arch.940080204
Rajkumar, V., Gunasekaran, C., Christy, I. K., Dharmaraj, J., Chinnaraj, P., & Paul, C. A. (2019). Toxicity, antifeedant and biochemical efficacy of Mentha piperita L. essential oil and their major constituents against stored grain pest. Pesticide biochemistry and physiology, 156, 138-144.‏ https://doi.org/10.1016/j.pestbp.2019.02.016
Regnault-Roger, C., Vincent, C., & Arnason, J. T. (2012). Essential oils in insect control: low-risk products in a high-stakes World. Annual Review Entomology, 57, 405–424. https://doi.org/10.1146/annurev-ento-120710-100554
Shahriari, M., Zibaee, A., Sahebzadeh, N., & Shamakhi, L. (2018). Effects of α-pinene, trans-anethole, and thymol as the essential oil constituents on antioxidant system and acetylcholine esterase of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Pesticide biochemistry and physiology, 150, 40-47.‏ https://doi.org/10.1016/j.pestbp.2018.06.015
Shakarami, J., Kamali, K., Moharramipour, S., & Meshkatassadat, M. H. (2004). Effects of three plant essential oils on biological activity of Callosobruchus maculatus F. (Coleoptera: Bruchidae). Iranian Agricultural Sciences Journal, 35(4), 965-972 (In Persian with English Summary).
Shakarmi, J., Kamali, K., Moharramipour, S., & Meshkat alsadat, M. H. (2003). Fumigant toxicity and repulsion of Artemisia aucheri Boiss essential oil on four species of storage pests. Journal of Plant Pests and Diseases, 71 (2), 61-75. (In Farsi)
SPSS Inc. (2015). IBM Corp. IBM SPSS statistics 23.0. Chicago, IL.
Stahl-Biskup, E., & Saez, F. (2002). Thyme, the Genus Thymus, Taylor and Francis, London, New York. p. 268. https://doi.org/10.4324/9780203216859
Stejskal, V., Vendl, T., Aulicky, R., & Athanassiou, C. (2021). Synthetic and natural insecticides: Gas, liquid, gel and solid formulations for stored-product and food-industry pest control. Insects, 12(7), 590.‏ https://doi.org/10.3390/insects12070590
Subbarao, K. V., Richardson, J. S., & Ang, L. C. (1990). Autopsy samples of Alzheimer,s cotrex show increased peroxidation in vitro. Journal of Neurochemistry, 55, 342-345. https://doi.org/ 10.1111/j.1471-4159.1990.tb08858.x
Tak, J. H., & Isman, M. B. (2016). Metabolism of citral, the major constituent of lemongrass oil, in the cabbage looper, Trichoplusia ni, and effects of enzyme inhibitors on toxicity and metabolism. Pesticide biochemistry and physiology, 133, 20-25. https://doi.org/ 10.1016/j.pestbp.2016.03.009
Wang, Y., Oberley, L. W., & Murhammer, D. W. (2001). Antioxidant defense system of two Lepidopteran insect cell lines. Free Radical Biology and Medicine, 30, 1254-1262. https://doi.org/ 10.1016/s0891-5849(01)00520-2
Wei, H., Liu, J., Li, B., Zhan, Z., Chen, Y., Tian, H., Lin, S., & Gu, X. (2015). The toxicity and physiological effect of essential oil from Chenopodium ambrosioides against the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Crop protection, 76, 68-74.‏ https://doi.org/10.1016/j.cropro.2015.06.013
WorWood (1993). The Complete Book of Essential Oils and Aromatherapy: Over 600 Natural, Non-Toxic and Fragrant Recipes to Create Health Beauty a Safe Home Environment. New World Library; 1st (first) edition. 488.
Zibaee, A., Zibaee, I., & Sendi, J. J. (2011). A juvenile hormone analog, pyriproxifen, affects some biochemical components in the hemolymph and fat bodies of Eurygaster integriceps Puton (Hemiptera: Scutelleridae). Pesticide biochemistry and physiology, 100 (3), 289-298. https://doi.org/10.1016/j.pestbp.2011.05.002
Zunino, M. P., & Zygadlo, J. A. (2004). Effect of monoterpenes on lipid oxidation of maize. Planta, 219, 303-309. https://doi.org/ 10.1007/s00425-004-1216-7
 © 2022 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/